首页> 外文学位 >Zirconium diboride-Based Composites for Ultra-High-Temperature Applications.
【24h】

Zirconium diboride-Based Composites for Ultra-High-Temperature Applications.

机译:超高温应用的二硼化锆基复合材料。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents an investigation into the processing, microstructure, and mechanical behavior of ZrB2-based composites for ultra-high-temperature applications. Various forms of SiC including nano-sized particles, micron-sized particles, and continuous fibers were used as reinforcement.;Three major investigations were conducted in this dissertation. First, the effect of incorporating nano-sized SiC particles into ZrB2 was investigated. Spark plasma sintering was used to consolidate nano-sized SiC/ZrB2 composite. The detailed microstructure of the composite was analyzed using transmission electron microscope. Micropillar compression test was also conducted. It was found that incorporation of nano-sized SiC effectively hindered the grain growth of ZrB2. The second study focused on the ternary ZrC-ZrB2-SiC ceramics. The fully densed ceramics were prepared by spark plasma sintering. Elastic modulus, hardness, fracture toughness, thermal conductivity, and electrical conductivity of ternary ZrC-ZrB2-SiC ceramics were measured. It was found that the fracture toughness of ternary ZrC-ZrB2-SiC ceramics is comparable to that of the ZrB2 ceramics and ZrB2-SiC ceramics. In addition, micropillar compression tests revealed information about typical longitudinal cracking behavior and generation of stacking faults. The third part of this dissertation focused on studying the effect of incorporating continuous SiC fibers on the microstructure and properties of ZrB2. The composite was consolidated by conventional hot pressing method. The chemical reaction between fiber and matrix materials was not observed based on thermodynamic calculation and TEM microstructural analysis. The fracture toughness of composite was measured to be four times higher than that of matrix materials. However, extensive matrix cracking was observed due to mismatch in thermal expansion coefficient between the fiber and matrix.;Finally, the challenge and future research needs in developing ultra-high-temperature ceramics are discussed.
机译:本文对基于ZrB2的复合材料在高温下的加工,显微组织和力学行为进行了研究。包括纳米级,微米级和连续纤维在内的各种形式的SiC被用作增强材料。首先,研究了将纳米级SiC颗粒掺入ZrB2的效果。火花等离子体烧结用于固结纳米尺寸的SiC / ZrB2复合材料。使用透射电子显微镜分析复合材料的详细微观结构。还进行了微柱压缩试验。发现掺入纳米尺寸的SiC有效地阻碍了ZrB 2的晶粒生长。第二项研究集中于ZrC-ZrB2-SiC三元陶瓷。通过火花等离子体烧结制备完全致密的陶瓷。测量了三元ZrC-ZrB2-SiC陶瓷的弹性模量,硬度,断裂韧性,热导率和电导率。发现三元ZrC-ZrB2-SiC陶瓷的断裂韧性与ZrB2陶瓷和ZrB2-SiC陶瓷相当。另外,微柱压缩试验揭示了有关典型纵向开裂行为和堆垛层错产生的信息。论文的第三部分重点研究了掺入连续SiC纤维对ZrB2组织和性能的影响。通过常规的热压方法将复合材料固结。根据热力学计算和TEM显微结构分析,未观察到纤维与基体材料之间的化学反应。经测量,复合材料的断裂韧性是基体材料的断裂韧性的四倍。但是,由于纤维和基体之间的热膨胀系数不匹配,导致基体产生了广泛的裂纹。最后,讨论了开发超高温陶瓷的挑战和未来的研究需求。

著录项

  • 作者

    Chung, Do Hwan Chung.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号