首页> 外文期刊>ACS applied materials & interfaces >Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance
【24h】

Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance

机译:具有高耐热冲击性能的高韧性二硼化锆基陶瓷复合材料的静电组装制备

获取原文
获取原文并翻译 | 示例
           

摘要

The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are-widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers on impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications: Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment, The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SIC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa.m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 degrees C and 304.4% at 500 degrees C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.
机译:使用陶瓷作为结构材料的主要问题是其脆性,这与刚性共价键或离子键有关。诸如碳化硅(SiC)或氮化硅(Si3N4)之类的坚固陶瓷的晶须或纤维广泛嵌入陶瓷基体中,以提高强度和韧性。这些绝缘填料的加入会阻碍陶瓷基体中的热流,从而降低其在某些实际应用中所需的耐热冲击性:在这里,我们证明了二硼化锆(ZrB2)/ SiC复合材料的韧性和耐热冲击性可以达到通过静电组装和随后的烧结处理将石墨烯引入复合材料中,同时得到了改善。掺入的石墨烯在复合材料内部产生了弱的晶界(GBs)界面和最佳的导热路径。与原始ZrB2-SIC复合材料相比,火花等离子体烧结(SPS)后,(2.0%)ZrB2-SiC /石墨烯复合材料的韧性显示出61%的增长(从4.3增至6.93 MPa.m(1/2));热冲击后的保留强度在400摄氏度时增加了74.8%,在500摄氏度时增加了304.4%。当前的工作为生产具有增强的热冲击性能的高韧性陶瓷基复合材料提供了重要指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号