首页> 外文学位 >Improving the thermal shock resistance of zirconium diboride ceramics.
【24h】

Improving the thermal shock resistance of zirconium diboride ceramics.

机译:提高二硼化锆陶瓷的耐热冲击性。

获取原文
获取原文并翻译 | 示例

摘要

Zirconium diboride (ZrB2) and ZrB2--SiC ceramics with densities greater than 99% were fabricated by hot pressing ZrB 2 and SiC powders and reactively hot pressing ZrH2, B 4C and Si to form ZrB2-27 vol% SiC. Thermophysical properties were investigated for hot pressed ZrB2 and ZrB2-30 vol% SiC ceramics. The thermal conductivity of ZrB2 increased from 56 W m-1 K-1 at room temperature to 67.0 W m -1 K-1 at 1675 K, whereas the thermal conductivity of ZrB2-SiC decreased from 62.0 W m-1 K-1 to 56 W m-1 K-1 over the same temperature range. Electron and phonon contributions to thermal conductivity were determined using electrical resistivity measurements and were used, along with grain size models, to explain the observed trends.; Thermal shock of high density ZrB2, ZrB2--30 vol% SiC and ZrB2--30 vol% SiC/graphite - 15 vol% SiC fibrous monoliths was studied. Experimental thermal shock values measured during a water quench test were the same for both materials (DeltaT crit∼400°C). A finite element model was used to estimate the temperature gradients and stresses in both ceramics during quench testing. The model predicted that maximum thermal stresses exceeded the strength of ZrB2 (568 MPa) but not ZrB2-30 vol% SiC (863 MPa). The lower than predicted thermal shock resistance of ZrB2-SiC was attributed to the non-uniform cooling between the ZrB2 matrix and the SiC particulate phase. Water quench thermal shock testing of ZrB2-based fibrous monolith ceramics had a critical thermal shock temperature (Delta Tcrit) of 1400°C, a 250% improvement over the previously reported DeltaTcrit values of ZrB2 and ZrB2-30 vol.% SiC of similar dimensions (4 x 3 x 45 mm). The improvement in thermal shock resistance was attributed to cell boundary crack propagation and crack deflection around the load bearing cells.
机译:通过热压ZrB 2和SiC粉末并反应性热压ZrH2,B 4C和Si制成ZrB2-27体积%SiC,制得密度大于99%的二硼化锆(ZrB2)和ZrB2--SiC陶瓷。研究了热压ZrB2和ZrB2-30 vol%SiC陶瓷的热物理性质。 ZrB2的热导率从室温下的56 W m-1 K-1增加到1675 K时的67.0 W m -1 K-1,而ZrB2-SiC的热导率从62.0 W m-1 K-1降低至在相同温度范围内为56 W m-1 K-1。电子和声子对热导率的贡献是通过电阻率测量确定的,并与晶粒尺寸模型一起用于解释观察到的趋势。研究了高密度ZrB2,ZrB2--30体积%SiC和ZrB2--30体积%SiC /石墨-15体积%SiC纤维整料的热冲击。两种材料在水淬试验中测得的实验热冲击值是相同的(DeltaT crit〜400°C)。有限元模型用于估算淬火过程中两种陶瓷的温度梯度和应力。该模型预测最大热应力超过ZrB2(568 MPa)的强度,但不超过ZrB2-30 vol%SiC(863 MPa)的强度。 ZrB2-SiC的耐热冲击性低于预期,其原因是ZrB2基体与SiC颗粒相之间的冷却不均匀。基于ZrB2的纤维整料陶瓷的水淬热冲击试验的临界热冲击温度(Delta Tcrit)为1400°C,比先前报道的类似尺寸的ZrB2和ZrB2-30 vol。%SiC的DeltaTcrit值提高了250% (4 x 3 x 45毫米)。抗热震性的提高归因于单元边界裂纹的扩展和承重单元周围的裂纹偏转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号