首页> 外文学位 >Dislocation dynamics simulations of plasticity at small scales.
【24h】

Dislocation dynamics simulations of plasticity at small scales.

机译:小规模塑性的位错动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests.;The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.
机译:由于金属结构和器件的制造尺寸可与下层位错微结构的长度尺度相媲美,因此它们的机械性能会发生巨大变化。由于这样的小结构在现代技术中越来越普遍,因此迫切需要了解小结构的弹性,可塑性和断裂的关键作用。以位错为模拟实体的位错动力学(DD)模拟提供了一种将长度尺度扩展到原子模拟之外的方法,并且DD模拟的结果可以直接与微机械测试进行比较。我们将使用3-D DD模拟来研究纳米级和微米级材料的塑性变形,并了解位错运动,相互作用和机械响应之间的相关性。具体来说,要识别哪些关键事件(即位错倍增,交叉滑移,存储,成核,结和偶极子形成,钉扎等)决定变形响应,以及随着系统尺寸减小,与本体行为相关联的这些变化如何从整体行为发生变化通过直接观察小规模可塑性获得的知识,提高我们目前对块状可塑性的了解。我们在单晶微柱和多晶薄膜上的模拟结果可以很好地推动实验结果,并捕获小规模可塑性的基本特征。此外,根据我们的模拟结果,已经开发了几个简单而准确的模型,它们可以合理地预测小规模材料的塑性行为。

著录项

  • 作者

    Zhou, Caizhi.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Metallurgy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号