首页> 外文学位 >Radiation-tolerant embedded memory using magnetic tunnel junctions.
【24h】

Radiation-tolerant embedded memory using magnetic tunnel junctions.

机译:使用磁性隧道结的耐辐射嵌入式存储器。

获取原文
获取原文并翻译 | 示例

摘要

Non-volatile memories occupy an important niche in the universe of solid state memory devices. They are able to retain their programmed state indefinitely without power, but can be reprogrammed as desired in situ. Aerospace applications have a significant need for non-volatile memories but they also present requirements that are not encountered in commercial electronics. In particular, many aerospace systems must be able to operate continuously and flawlessly in the natural radiation environment of space.;The recent development of practical spin-polarized magnetic tunneling junctions (MTJs) has made possible a new class of non-volatile memories, known collectively as magnetic RAM (MRAM). Information is stored as the orientation of magnetic fields in sub-micron ferromagnetic elements, which is expected to provide much higher resistance to the effects of ionizing radiation than memory technologies that rely on stored charge.;While commercial semiconductor designers are actively pursuing the development of bulk MRAM, where millions of bits of memory are incorporated into a single integrated circuit, there has been little research devoted to integrating magnetic memory elements with logic circuits. The goal of this research is to design such embedded magnetic memories with the additional requirement that they must be highly resistant to ionizing radiation.;This dissertation begins with an overview of the quantum phenomena at work in magnetic tunneling junctions, the natural radiation environment of space, and radiation effects in CMOS electronics. This leads into a discussion of the goals, constraints, and obstacles that must be considered when designing radiation-tolerant embedded magnetic memories. Prior art in this area is presented and evaluated.;Two novel memory circuits were created during this research. The first is a differential latch cell that uses the MTJs themselves to provide radiation tolerance. The second is a magnetic shadow latch that takes advantage of the bottom gate available in a double-gate silicon-on-insulator technology. The shadow latch concept is extensively studied and optimized. Finally, a new "one-wire" programming method is described. This is a critical aspect of embedded magnetic memory, and limits its energy efficiency. Associated reliability issues are investigated, and various techniques are applied to optimize the circuits.
机译:非易失性存储器在固态存储设备领域占据着重要的位置。它们可以在没有电源的情况下无限期地保持其编程状态,但是可以根据需要在原位进行重新编程。航空航天应用对非易失性存储器有很大的需求,但它们也提出了在商用电子产品中未遇到的要求。特别是,许多航空航天系统必须能够在空间的自然辐射环境中连续且完美地运行。;实用自旋极化磁隧道结(MTJ)的最新发展使已知的一类新型非易失性存储器成为可能统称为磁RAM(MRAM)。信息被存储为亚微米铁磁元件中的磁场方向,与依赖于存储电荷的存储技术相比,有望为电离辐射带来更高的抵抗力;然而,商业半导体设计人员正在积极地追求半导体的发展。大容量的MRAM,其中将数百万位的存储器合并到单个集成电路中,很少有研究致力于将磁存储元件与逻辑电路集成在一起。这项研究的目的是设计这样的嵌入式磁存储器,其附加要求是必须具有高度的抗电离辐射能力。本论文首先概述了在磁性隧道结中工作的量子现象,即空间的自然辐射环境。以及CMOS电子器件中的辐射效应。这就导致了在设计耐辐射嵌入式磁性存储器时必须考虑的目标,约束和障碍。介绍和评估了该领域的现有技术。;在本研究过程中创建了两个新颖的存储电路。第一个是差分锁存单元,它使用MTJ本身来提供辐射容限。第二个是磁性阴影锁存器,它利用了双栅极绝缘体上硅技术中可用的底栅。阴影锁存器概念已得到广泛研究和优化。最后,描述了一种新的“单线”编程方法。这是嵌入式磁存储器的关键方面,并限制了其能量效率。研究了相关的可靠性问题,并应用了各种技术来优化电路。

著录项

  • 作者

    Hass, Kenneth Joseph.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号