首页> 外文学位 >Incorporating physical layer capture in the modeling, analysis and design of wireless access mechanisms.
【24h】

Incorporating physical layer capture in the modeling, analysis and design of wireless access mechanisms.

机译:将物理层捕获功能整合到无线访问机制的建模,分析和设计中。

获取原文
获取原文并翻译 | 示例

摘要

While physical layer capture has been observed in real implementations of 802.11 devices, accurate models that describe the behavior of the phenomenon have been scarce. Physical layer capture describes the phenomenon when a transmitted frame gets through a collision with neighbors. Even when multiple neighbors access the channel simultaneously, a receiver can receive the frame without errors if the interference strength from the neighbors is less than a threshold. Our experiments in a real 802.11 wireless testbed also support this, demonstrating that modern 802.11 wireless devices may capture frames among concurrent transmissions.;However, the previous models and fair scheduling algorithms only consider absolute conflicts between two neighbors. If transmissions from any two neighbors overlap, the transmissions is assumed to fail and the transmitted frames are lost. Frames can be received only when all neighbors around the receivers hold off their transmissions during the entire of the transmission time. This link-layer model, although simplifying the analysis and design of scheduling protocols, cannot be applied in general, especially when senders and receivers are close and frame capture occurs frequently.;In this thesis, a general analytical framework is first presented to analyze the error probability and throughput of frame transmissions in present of physical layer capture. The framework, consisting of MAC and physical layer protocol models, is completely open to any kind of physical channel models. Introducing the concept of interference function, defined according to a given physical channel model, the framework can accommodate any of the physical layer models and also allows the empirical measurements as a basis of the models. To describe the interaction and interference among the MAC and physical layer protocols, an iterative method is presented. The model offers a more accurate prediction than previous work by taking real channel models into account. This permits the analysis of frame reception at any transmission rate with interference from neighbors at any set of locations.;As the second part of this work, utility fairness is explored in presence of physical layer capture. Using the analytical model proposed above, the general formulation of fairness problem is presented and the feasible allocation space is proven to be non-convex under physical layer capture. This non-convexity shows the previous techniques may not achieve fair throughput allocations and motivates a new fair scheduling algorithm.;For a new fair allocation scheme, a log-utility fair algorithm is presented. Widely known as a less egalitarian approach to max-min fairness, log-utility fair scheduling is a good compromise between the effective utilization of the channel and the fairness of individual senders. Based on the proposed analytical model, decentralized log-utility fair allocation algorithms are designed incorporating the phenomena of physical layer capture. The efficient algorithms, linear in complexity to the number of nodes, achieve throughput allocations close to the optimal in log-utility fairness as opposed to previously proposed ones that suffer from node throughput starvation in real environments by ignoring physical layer capture.;To verify the proposed analytical model and scheduling algorithms, real experiments as well as extended simulations are performed in the Orbit testbed, a large grid consisting of 400 nodes with 802.11 wireless interfaces. Extensive experiments demonstrate that using the proposed model, the difference between the analyzed and measured error probability for a single sender is just 1.65% on average. On the other hand, the proposed fair algorithm improves the aggregate utility by more than 22.4% and the minimum node throughput by almost 6.3 times compared to the results of previously proposed algorithms.
机译:虽然在802.11设备的实际实现中已经观察到物理层捕获,但是描述现象现象的准确模型却很少。物理层捕获描述了当传输的帧与邻居发生冲突时的现象。即使当多个邻居同时访问该信道时,如果来自邻居的干扰强度小于阈值,则接收机也可以无错误地接收帧。我们在真实802.11无线测试平台上进行的实验也支持这一点,表明现代802.11无线设备可以捕获并发传输中的帧。但是,以前的模型和公平调度算法仅考虑两个邻居之间的绝对冲突。如果来自任何两个邻居的传输重叠,则假定传输失败,并且传输的帧丢失。只有当接收方周围的所有邻居在整个传输时间内都推迟传输时,才能接收帧。这种链路层模型虽然简化了调度协议的分析和设计,但通常无法应用,特别是当发送方和接收方距离很近且频繁发生帧捕获时。本论文首先提出了一个通用的分析框架来分析调度协议。当前物理层捕获中的帧传输错误概率和吞吐量。该框架由MAC和物理层协议模型组成,完全对任何类型的物理通道模型开放。引入根据给定物理信道模型定义的干扰函数的概念,该框架可以容纳任何物理层模型,并且还允许将经验测量作为模型的基础。为了描述MAC和物理层协议之间的相互作用和干扰,提出了一种迭代方法。通过考虑实际渠道模型,该模型比以前的工作提供了更准确的预测。这允许分析任何传输速率下的帧接收,并受到来自任意位置的邻居的干扰。作为这项工作的第二部分,在存在物理层捕获的情况下探索效用公平性。使用以上提出的分析模型,提出了公平性问题的一般表述,并证明了在物理层捕获下可行的分配空间是非凸的。这种非凸性说明了以前的技术可能无法实现公平的吞吐量分配,并激励了一种新的公平调度算法。对于一种新的公平分配方案,提出了一种对数效用公平算法。对数效用公平调度被广泛认为是对最大-最小公平性的一种较不平等的方法,它是对信道的有效利用与各个发送者的公平之间的良好折衷。在提出的分析模型的基础上,设计了结合物理层捕获现象的分散式日志实用公平分配算法。高效算法的复杂度与节点数成线性关系,通过忽略物理层捕获,实现了对数实用性公平性接近最佳的吞吐量分配,这与先前提出的在实际环境中遭受节点吞吐量匮乏的算法相反。建议的分析模型和调度算法,真实的实验以及扩展的模拟在Orbit测试平台上进行,Orbit测试平台是一个大型网格,由400个带有802.11无线接口的节点组成。大量实验表明,使用所提出的模型,单个发件人的已分析和测得的错误概率之间的差异平均仅为1.65%。另一方面,与先前提出的算法相比,提出的公平算法将集合效用提高了22.4%以上,最小节点吞吐量提高了近6.3倍。

著录项

  • 作者

    Chang, Hoon.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号