首页> 外文学位 >Evaluation of small hole metallic arrays for plasmon-enhanced spectroscopic substrates.
【24h】

Evaluation of small hole metallic arrays for plasmon-enhanced spectroscopic substrates.

机译:等离子体增强光谱基板的小孔金属阵列的评估。

获取原文
获取原文并翻译 | 示例

摘要

Light transmission enhancement through metallic subwavelength hole arrays has been studied to understand the coupling mechanism of the transmission behaviors in this dissertation. Surface plasmon modes generated by the periodic hole structure and interactions with the evanescent propagating waveguide modes are attributed to the high transmission. In our experimental research with various hole shape, size and periodicity, the transmission resonances have been measured and characterized for the relationships between the hole geometry and transmission signals. Throughout the study, we have several outstanding achievements in view of light transmission enhancement: (1) photoluminescence effects with optically thin metal film, (2) the relationships between the transmission behaviors and hole shape dependence, (3) significant role of hole's geometry in fluorescence excitation spectrum within small hole arrays.; The subwavelength hole arrays fabricated by electron beam lithography processes and an ion-milling etching system are examined by the scanning electron microscope and atomic force microscope. Our characterized and developed processes carry out well-defined hole shapes and sizes on gold metallic thin films. The hole shapes used for the transmission enhancement observation have circular, square and equilateral triangular geometry on 60 nm and 130 nm of metal thicknesses. The hole diameter for circular or side length for square and triangular shape are prepared in ranges from about 50 nm to 300 nm. The measurement of transmission signal through the metallic hole arrays are collected by objective lenses with an inverted microscope system to a high resolution spectrometer.; From the characterized transmission spectra, the photoluminescence effects with optically thin gold metal films are described by the electron transitions and recombination process between d-bands in the metal and the Fermi level in the conduction band. Furthermore, we presented that the transmission resonance peak wavelengths are inconsistent with the simple plasmon model as determined with only the momentum conservation law. The effects of hole area, hole shape and metal film thicknesses affect significantly the transmission spectra. The red-shift of resonance peaks and the coupling intensity of transmission with various hole size, shape and metal film thicknesses have been observed. Especially, the equilateral triangular hole shape presents strong transmission enhancement compared to the circular and square hole shape.; For the laser spectroscopy experiments, 0.5 wt.% PMMA solution containing the Rhodamine 6G fluorescent molecules was coated onto the metallic hole arrays. The fluorophore solution was mixed into the PMMA solution with a concentration of about 0.5x10-7 M. The PMMA is spin-coated to a thickness on metal of 40 nm. A Nd:YAG 532 nm wavelength laser coupled into a single-mode optical fiber was used for excitation of the fluorescent molecules with the transmission measurement system.; The excitation is achieved with two different orientations of laser light incidence in order to determine the coupling efficiency of surface plasmon modes to propagating waveguide modes. The used hole arrays samples are square with different periodicity, 400 nm and 600 nm, and the hole size is about 110 nm and 120 nm, respectively. The measured spectra from both orientations show the same transmission profiles. The convolution of the bulk fluorescence with the white light transmission signals of the same samples has been characterized for the effects of diffraction from the periodic hole patterns. From the study of fluorescence excitation through the hole arrays, it appears determining that the hole geometry, i.e. hole shape and hole size, is the dominant factor in the fluorescence spectrum.
机译:本文研究了通过金属亚波长孔阵列的光传输增强,以了解传输行为的耦合机理。由周期性孔结构产生的表面等离子体激元模式以及与van逝传播波导模式的相互作用归因于高透射率。在我们对各种孔形状,大小和周期性进行的实验研究中,已经测量了传输共振并确定了孔几何形状与传输信号之间的关系。在整个研究过程中,鉴于光传输的增强,我们取得了几项杰出的成就:(1)光学薄金属膜的光致发光效应;(2)传输行为与孔形状依赖性之间的关系;(3)孔的几何形状在光学中的重要作用小孔阵列内的荧光激发光谱。通过扫描电子显微镜和原子力显微镜检查通过电子束光刻工艺和离子铣刻蚀系统制造的亚波长孔阵列。我们经过表征和开发的工艺可以在金金属薄膜上进行明确定义的孔形状和尺寸。用于透射增强观察的孔形状在金属厚度为60 nm和130 nm时具有圆形,正方形和等边三角形的几何形状。用于圆形或用于正方形和三角形的边长的孔径制备在约50nm至300nm的范围内。通过金属孔阵列的传输信号的测量由物镜和倒置显微镜系统收集到高分辨率光谱仪中。从表征的透射光谱中,光学上较薄的金金属膜的光致发光效应通过金属中d波段与导带中费米能级之间的电子跃迁和复合过程来描述。此外,我们提出传输共振峰波长与仅由动量守恒定律确定的简单等离子体激元模型不一致。孔面积,孔形状和金属膜厚度的影响会显着影响透射光谱。观察到共振峰的红移和传输耦合强度与各种孔尺寸,形状和金属膜厚度的关系。特别地,与圆形和方形孔形状相比,等边三角形孔形状呈现出强的透射增强。对于激光光谱实验,将包含罗丹明6G荧光分子的0.5重量%的PMMA溶液涂覆到金属孔阵列上。将荧光团溶液以约0.5x10-7 M的浓度混合到PMMA溶液中。将PMMA旋涂到40 nm的金属厚度上。耦合到单模光纤中的Nd:YAG 532 nm波长激光器用于通过透射测量系统激发荧光分子。为了确定表面等离子体激元模与传播的波导模的耦合效率,用两种不同的激光入射方向来实现激发。所用的孔阵列样品是具有不同周期性的正方形,分别为400 nm和600 nm,孔尺寸分别为110 nm和120 nm。从两个方向测得的光谱显示出相同的透射曲线。相同的样品的体荧光与白光透射信号的卷积已被表征为具有周期性孔图案的衍射效应。从对通过孔阵列的荧光激发的研究看来,似乎确定了孔的几何形状,即孔的形状和孔的尺寸,是荧光光谱中的主要因素。

著录项

  • 作者

    Kim, Je Hong.;

  • 作者单位

    The University of North Carolina at Charlotte.$bOptical Science and Engineering.;

  • 授予单位 The University of North Carolina at Charlotte.$bOptical Science and Engineering.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号