首页> 外文学位 >Mechanistic investigations of granular iron and iron-based bimetallic reductants for treatment of organohalide pollutants.
【24h】

Mechanistic investigations of granular iron and iron-based bimetallic reductants for treatment of organohalide pollutants.

机译:颗粒状铁和铁基双金属还原剂处理有机卤化物污染物的机理研究。

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade granular iron permeable reactive barriers (FePRBs) have established themselves as a proven alternative to conventional groundwater treatment. This study explores the chemical processes through which iron-based reductants degrade halogenated organic solvents. Identifying those factors that influence the rates of such processes may allow treatment strategies targeting these ubiquitous pollutants to be optimized.;We report on a nonlinear relationship between rates of alkyl polyhalide reduction and granular iron mass loadings, which we attribute to the thickening of a passive oxide overlayer on reductant particles in batch systems with high mass loadings. This nonlinear relationship contradicts the underlying assumptions of the surface-area-normalized kinetic model traditionally applied to iron systems, illustrating the need for alternative models if laboratory-scale data is to accurately predict pollutant fate in field-scale treatment systems. Results from this work also suggest that surface sites responsible for iron corrosion may also participate in alkyl polyhalide reduction.;Metal additives to granular iron can both enhance rates of organohalide reduction and alter branching ratios to minimize the formation of partially halogenated products. Depending upon the identity of the organohalide, however, certain additives may also inhibit reduction rates. Bimetallic reductant reactivity was found to correlate with the solubility of atomic hydrogen within the metal additive, while similar reactivity trends for our bimetals toward 1,1,1-trichloroethane reductive dehalogenation and 2-butyne hydrogenation also support a role for reactive atomic hydrogen in bimetallic systems. From a treatment perspective, bimetallic reductants are likely best applied to vinyl halide pollutants, which were considerably more susceptible to reduction than alkyl polyhalides in our reductant systems.;Rates of alkyl polyhalide reduction by granular iron generally increased with halogenation, although brominated species were substantially more reactive than their chlorinated analogues. Polyhalogenated ethanes possessing halogens on adjacent carbon centers reacted exclusively via reductive beta-elimination, while alternative reduction pathways (hydrogenolysis, reductive alpha-elimination) were only observed when multiple halogens were present only on a single carbon center. These observations, in addition to reactivity correlations developed between rate constants for organohalide reduction and carbon-halogen bond dissociation energies, may allow predictions of pollutant behavior in field-scale iron treatment systems to be improved.
机译:在过去的十年中,粒状铁可渗透反应性屏障(FePRB)已确立其作为常规地下水处理的可靠替代品。这项研究探索了铁基还原剂降解卤代有机溶剂的化学过程。确定那些影响此类过程速率的因素可能可以优化针对这些普遍存在的污染物的处理策略。;我们报告了烷基多卤化物还原速率与颗粒铁质量负载之间的非线性关系,这归因于被动钝化的增稠批量加载系统中还原剂颗粒上的氧化物覆盖层。这种非线性关系与传统上应用于铁系统的表面积归一化动力学模型的基本假设相矛盾,这说明了如果实验室规模的数据要准确地预测现场规模的处理系统中的污染物命运,就需要替代模型。这项工作的结果还表明,引起铁腐蚀的表面位置也可能参与了烷基多卤化物的还原。金属颗粒铁的添加剂既可以提高有机卤化物的还原率,又可以改变支化比,以最大程度地减少部分卤化产物的形成。然而,取决于有机卤化物的特性,某些添加剂也可能抑制还原速率。发现双金属还原剂的反应性与原子氢在金属添加剂中的溶解度相关,而我们的双金属向1,1,1-三氯乙烷还原脱卤和2-丁炔氢化的类似反应趋势也支持了双金属中反应性原子氢的作用。系统。从治疗的角度看,双金属还原剂最适合用于卤化乙烯污染物,在我们的还原剂体系中,它们比烷基多卤化物更容易还原。;颗粒状铁对烷基多卤化物的还原率通常随着卤化而增加,尽管溴化物种显着增加比它们的氯化类似物更具反应性。在相邻碳中心具有卤素的多卤代乙烷仅通过还原性β-消除反应,而仅在单个碳中心上存在多个卤素时,才观察到其他还原途径(氢解,还原性α-消除)。这些观察结果,除了在有机卤化物还原的速率常数与碳-卤素键解离能之间形成的反应性相关性之外,还可以改善对现场规模的铁处理系统中污染物行为的预测。

著录项

  • 作者

    Cwiertny, David M.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 306 p.
  • 总页数 306
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号