首页> 外文学位 >Spectroscopic and computational studies of the intradiol and extradiol dioxygenases: Understanding oxygen activation by ferrous and ferric non-heme iron active sites.
【24h】

Spectroscopic and computational studies of the intradiol and extradiol dioxygenases: Understanding oxygen activation by ferrous and ferric non-heme iron active sites.

机译:内二醇和外二醇双加氧酶的光谱和计算研究:了解亚铁和三价非血红素铁活性位点对氧的活化作用。

获取原文
获取原文并翻译 | 示例

摘要

Mononuclear non-heme iron enzymes catalyze a wide range of biological reactions involving O2. A sub-class of these enzymes is the catechol dioxygenases. They are mostly found in soil bacteria but related enzymes are also found in humans. They catalyze the ring cleavage of catecholic substrates by inserting both atoms of O2 into the aromatic ring. Based on the position of ring cleavage, the catechol dioxygenases are further divided into intradiol and extradiol dioxygenases. These enzymes have different residues around the iron center and differ in metal oxidation states and reaction mechanisms. Intradiol dioxygenases employ a Fe3+ center to activate the substrate for direct attack by O2 and insert O2 between the vicinal hydroxyl groups to yield muconic acids derivatives. Alternatively, extradiol dioxygenases use a Fe2+ center to activate O 2 and incorporate both atoms of O2 adjacent to the vicinal diols to yield muconic semialdehyde products. The significance of these enzymes lies in their role in bioremediation, and mutations in human enzymes are associated with genetic diseases.; Oxygen intermediates are often too labile to be trapped for spectroscopic studies; therefore we applied a combination of experiments and theoretical calculations on a series of anaerobic species to evaluate the similarities and differences in these enzymes. To understand how the Fe3+ site activates the substrate in intradiol dioxygenases, we characterized the geometric and electronic structures of the anaerobic enzyme-substrate complex by using variable-temperature variable-field magnetic circular dichroism spectroscopy and density functional theory (DFT) calculations. We further developed a theoretical model to explain how triplet O2 interacts with singlet catechol in this formally spin-forbidden reaction. To understand how the Fe 2+ site activates O2 in extradiol dioxygenases, we used NO as an O2 analogue to study potential FeO2 intermediates in the protein-catalyzed reactions. We developed an experimentally calibrated DFT protocol for {lcub}FeNO{rcub}7 complexes using a well-characterized model system. By applying this DFT methodology on the enzyme-nitrosyl complexes and complementing the results by spectroscopic data, we have laid the foundation necessary for the investigation of the O2 reaction coordinate of extradiol dioxygenases and identification of factors governing the specificity of ring cleavage in the catechol dioxygenases.
机译:单核非血红素铁酶催化涉及O2的多种生物反应。这些酶的一个亚类是儿茶酚双加氧酶。它们大多存在于土壤细菌中,但在人类中也存在相关的酶。他们通过将O2的两个原子都插入芳环来催化环己基底物的环裂解。根据环裂解的位置,将儿茶酚双加氧酶进一步分为内二醇和外二醇双加氧酶。这些酶在铁中心周围具有不同的残基,并且在金属氧化态和反应机理上也不同。二醇内双加氧酶利用Fe3 +中心激活底物以直接受到O2的攻击,并在邻位羟基之间插入O2以产生粘康酸衍生物。备选地,外二醇双加氧酶利用Fe 2+中心活化O 2并结合邻近邻二醇的O 2的两个原子以产生粘康半醛产物。这些酶的重要性在于它们在生物修复中的作用,而人类酶的突变与遗传疾病有关。氧气中间体通常太不稳定而无法被光谱学研究捕获。因此,我们将一系列厌氧菌种的实验和理论计算相结合,以评估这些酶的异同。为了了解Fe3 +位点如何激活内二醇双加氧酶中的底物,我们通过使用可变温度可变场磁圆二色性光谱法和密度泛函理论(DFT)计算来表征厌氧酶-底物复合物的几何和电子结构。我们进一步开发了一个理论模型来解释三重态O2如何与单重态儿茶酚在这种形式上自旋的反应中相互作用。为了解Fe 2+位点如何激活胞外二醇双加氧酶中的O2,我们使用NO作为O2类似物来研究蛋白质催化反应中潜在的FeO2中间体。我们使用功能强大的模型系统开发了针对{lcub} FeNO {rcub} 7配合物的实验校准DFT协议。通过将这种DFT方法应用于酶-亚硝酰基复合物并通过光谱数据对结果进行补充,我们为研究二醇外加氧合酶的O2反应坐标以及确定控制儿茶酚双加氧酶环裂解特异性的因素奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号