首页> 外文学位 >Microstructure design and formation of organic/inorganic thin film nanocomposites.
【24h】

Microstructure design and formation of organic/inorganic thin film nanocomposites.

机译:有机/无机薄膜纳米复合材料的微观结构设计和形成。

获取原文
获取原文并翻译 | 示例

摘要

There is significant interest in understanding and exploiting the extraordinary property enhancements of polymers, enabled by adding small concentrations of nanoparticles to polymer hosts to create polymer nanocomposites (PNCs). Thin film PNCs hold potential for novel technological applications in areas such as optoelectronics or photovoltaic devices. One of the key challenges that limits the potential of PNC-based technologies is the control of nanofiller dispersion throughout the matrix. This requires a fundamental understanding of the energetic interactions that affect dispersion. Thin film PNCs pose a greater challenge than bulk PNCs, largely because interfacial interactions become increasingly important as the material is confined.; It is equally important to find effective processing schemes that promote nanofiller dispersion in a manner that can be readily scalable for industrial operations. Accordingly, the last few years have seen an upsurge in processing schemes involving supercritical solvents, due in part to their tunable solvent strength. To this end, our research is aimed at gaining control of nanoparticle dispersion within thin film hosts using supercritical CO2 (scCO 2) as a processing aid. This research examined a series of related problems.; For the first project, we investigated the effects of scCO2 sorption on the structural stability and kinetics of destabilization of homopolymer films. We showed that the films are metastable under these conditions, and the barrier to nucleation is larger than that encountered in air/vaccum.; We also examined the issue of nanofiller dispersion within homopolymer thin films. In a model athermal mixture, polystyrene-coated gold nanoparticles in polystyrene hosts, interfacial segregation was generally observed, and was shown to be a function of the wetting characteristics of the brush-matrix interface and the ratio of the size of the particles to the unperturbed dimensions of the host chains. In a separate system, we show how scCO2 can serve to prevent coarsening, which is ubiquitous in air/vacuum environments at elevated temperatures, for these nanofillers.; Finally, we made nanocomposite micellar structures from block copolymers, with a fluorinated block. Gold nanoparticles were sequestered within the discontinuous domain. We then showed how scCO2 could be used to invert the structure, placing the nanoparticles in the continuous phase.
机译:人们对理解和利用聚合物非凡的性能增强表现出极大的兴趣,可以通过向聚合物主体中添加少量浓度的纳米颗粒以创建聚合物纳米复合材料(PNC)来实现。薄膜PNC在光电子或光伏设备等领域具有新颖技术应用的潜力。限制基于PNC的技术潜力的主要挑战之一是控制整个基质中纳米填料的分散。这需要对影响分散的能量相互作用有基本的了解。薄膜PNC比散装PNC面临更大的挑战,这主要是因为随着材料的限制,界面相互作用变得越来越重要。同样重要的是找到有效的处理方案,以易于扩展的工业操作方式促进纳米填料的分散。因此,最近几年,涉及超临界溶剂的加工方案激增,部分原因是其可调节的溶剂强度。为此,我们的研究旨在利用超临界CO2(scCO 2)作为加工助剂来控制薄膜主体内的纳米颗粒分散。这项研究检查了一系列相关问题。对于第一个项目,我们研究了scCO2吸附对均聚物薄膜结构稳定性和去稳定动力学的影响。我们证明了在这些条件下这些膜是亚稳态的,成核的障碍比空气/真空中遇到的更大。我们还研究了均聚物薄膜中纳米填料分散的问题。在模型非热混合物中,通常观察到聚苯乙烯主体中的聚苯乙烯涂层金纳米颗粒,界面偏析,并显示为刷-基体界面的润湿特性以及颗粒尺寸与未扰动颗粒之比的函数主机链的尺寸。在一个单独的系统中,我们展示了scCO2如何防止这种纳米填料在大气/真空环境中普遍存在的变粗现象。最后,我们用含氟嵌段的嵌段共聚物制成了纳米复合胶束结构。金纳米颗粒被隔离在不连续域内。然后,我们展示了如何使用scCO2反转结构,将纳米颗粒置于连续相中。

著录项

  • 作者

    Meli, Luciana.;

  • 作者单位

    The University of Texas at Austin.$bChemical Engineering.;

  • 授予单位 The University of Texas at Austin.$bChemical Engineering.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号