首页> 外文学位 >Scanning Probe Microscopy of Organic Solar Cells.
【24h】

Scanning Probe Microscopy of Organic Solar Cells.

机译:有机太阳能电池的扫描探针显微镜。

获取原文
获取原文并翻译 | 示例

摘要

Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques.;In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than trEFM, and of greater utility in identifying local changes in steady-state charge density that can be associated with charge trapping.;In the second case, we have developed a new understanding of charge transport between a sharp AFM tip and planar substrates applicable to conductive and photoconductive atomic force microscopy, and shown that hole-only transport characteristics can be easily obtained including quantitative values of the charge carrier mobility. Finally, we have shown that intensity-dependent photoconductive atomic force microscopy measurements can be used to infer the 3D structure of organic photovoltaic materials, and gained new insight into the influence vertical composition of the these devices can have on their open-circuit voltage and its intensity dependence.
机译:有机半导体的纳米结构复合材料是用于制造低成本太阳能电池的有前途的一类材料。了解这些材料的纳米级形态如何影响其作为太阳能收集器的效率,对于最终将其大规模部署用于一次发电的潜力至关重要。在本文中,我们描述了使用基于光电扫描探针的显微镜方法来研究这种效率-结构与纳米级分辨率的关系。特别是,我们的目标是对从光子到电流的功率转换过程中的每个步骤进行空间分辨的测量,包括电荷产生,传输和重组过程,并将它们与局部器件结构相关联。我们在这项工作中实现了两个目标:首先,开发并应用新颖的电敏感扫描探针显微镜实验来研究上述光电材料和工艺。第二,加深我们对作为实验技术基础的物理学的理解。在第一种情况下,我们应用了导电和光导原子力(cAFM&pcAFM)显微镜来测量局部光电流收集和暗电荷传输性质。包括聚合物/富勒烯共混物和聚合物-纳米线/富勒烯共混物在内的各种模型和新型有机太阳能电池复合材料的研究发现,局部异质性是规则,特定有益纳米结构的均匀性的改善可导致效率的大幅提高。我们已经使用扫描开尔文探针显微镜(SKPM)和时间分辨静电力显微镜(trEFM)来表征所有聚合物共混物,量化它们对光化学降解的敏感性以及随后形成的局部电荷陷阱。我们发现,虽然trEFM提供了灵敏的局部量子效率度量,但SKPM通常不适合效率的测量,它不如trEFM灵敏,并且在识别可能与电荷俘获相关的稳态电荷密度的局部变化中具有更大的实用性。在第二种情况下,我们对锋利的AFM尖端与适用于导电和光电导原子力显微镜的平面基板之间的电荷传输有了新的认识,并表明可以很容易地获得仅空穴的传输特性,包括电荷的定量值运营商流动性。最后,我们表明强度依赖的光电导原子力显微镜测量可用于推断有机光伏材料的3D结构,并获得了对这些器件的垂直组成对其开路电压及其开路电压的影响的新见解。强度依赖性。

著录项

  • 作者

    Reid, Obadiah G.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry Physical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号