首页> 外文学位 >Dry-etch benzocyclobutene (BCB) based neural-electronic interface.
【24h】

Dry-etch benzocyclobutene (BCB) based neural-electronic interface.

机译:基于干蚀刻苯并环丁烯(BCB)的神经电子界面。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses the key issues related to the development of dry-etch Benzocyclobutene (BCB) based neural-electronic interface for intra-cortical and epidural neural recording using surface micromachining techniques.;First, the processing and characterization of Dry-etch BCB thin films are studied. This includes study of BCB film thickness, surface uniformity control through spin-coating, curing recipe development and optimization, dry etch rate and aspect ratio control, planarization level study, and degradation effect investigation. The results reveal that the dry-etch BCB film uniformity and pin-hole density are mainly determined by the ramping speed and spin-duration. Dry etch BCB film (25um) with surface roughness less than 1000A and pinhole density less than 1.5x10-3mm-2 has been acquired. The BCB etch rate and via angle are determined by the pressure, gas concentration, and RF power. The optimized plasma etch test shows that greater than 1mum/min etch rate and 65 degree via angle are best for the packaging and patterning of the neural probes. The degree of planarization of BCB decreases as the thickness of underlying pattern and the etch rate and film thickness of BCB drops 10% as time after 12 months.;Second, the design and fabrication process for various neural electrode arrays using silicon surface micromachining technique are investigated. This includes structure and process design of single side neural electrode array (SNEA) and double side neural electrode array (DNEA). Several approaches have been investigated to fabricate the BCB based neural electrodes, and the one with higher FAB yield and device performance is identified. The related processing techniques were also studied, which including the mask making, metallization, wet etch, photolithography, silicon etch, and flip chip bonding technique. Penetrating and impedance test reveals the dry-etch BCB based neural implant with 1.5um tungsten incorporation or enough thickness can penetrate into the brain without damage to the electrode and brain. The electrode with 20um size recording site shows 2M-Ohm impedance at 1kHZ. The process yield and device failure mechanism are analyzed. Several approaches have been performed to improve the electrode yield from 40% to 70%, however, long term effort is still required to improve the overall process yield.
机译:本文主要研究与基于表面微加工技术的基于干蚀刻苯并环丁烯(BCB)的用于皮层内和硬膜外神经记录的神经电子接口有关的关键问题。首先,干蚀刻BCB薄膜的加工和表征被研究。这包括研究BCB膜的厚度,通过旋涂控制表面均匀性,固化配方的开发和优化,干法蚀刻速率和长宽比控制,平面化水平研究以及降解效果研究。结果表明,干法刻蚀BCB薄膜的均匀性和针孔密度主要取决于升温速度和自旋持续时间。已获得表面粗糙度小于1000A和针孔密度小于1.5x10-3mm-2的干法蚀刻BCB膜(25um)。 BCB蚀刻速率和通孔角度取决于压力,气体浓度和RF功率。优化的等离子体蚀刻测试表明,大于1毫米/分钟的蚀刻速率和65度的过孔角度最适合于神经探针的包装和图案化。十二个月后随着时间的流逝,BCB的平面化程度会随着底层图案的厚度减小而降低,且BCB的蚀刻速率和膜厚会下降10%。其次,采用硅表面微加工技术的各种神经电极阵列的设计和制造工艺是:调查。这包括单侧神经电极阵列(SNEA)和双侧神经电极阵列(DNEA)的结构和工艺设计。已经研究了几种制造基于BCB的神经电极的方法,并且确定了一种具有更高的FAB产量和器件性能的方法。还研究了相关的处理技术,包括掩模制作,金属化,湿法蚀刻,光刻,硅蚀刻和倒装芯片键合技术。渗透和阻抗测试表明,干法基于BCB的神经植入物掺入了1.5um的钨或足够的厚度可以渗透到大脑中而不会损坏电极和大脑。记录位置为20um的电极在1kHZ处显示2M-Ohm的阻抗。分析了工艺良率和设备故障机理。已经执行了几种方法来将电极的产率从40%提高到70%,但是,仍然需要长期的努力来提高整个工艺的产率。

著录项

  • 作者

    Zhu, Haixin.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号