首页> 外文学位 >Learning a family of detectors.
【24h】

Learning a family of detectors.

机译:学习探测器系列。

获取原文
获取原文并翻译 | 示例

摘要

Object detection and recognition are important problems in computer vision. The challenges of these problems come from the presence of noise, background clutter, large within class variations of the object class and limited training data. In addition, the computational complexity in the recognition process is also a concern in practice. In this thesis, we propose one approach to handle the problem of detecting an object class that exhibits large within-class variations, and a second approach to speed up the classification processes.;In the first approach, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly solved with using a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. For applications where explicit parameterization of the within-class states is unavailable, a nonparametric formulation of the kernel can be constructed with a proper foreground distance/similarity measure. Detector training is accomplished via standard Support Vector Machine learning. The resulting detectors are tuned to specific variations in the foreground class. They also serve to evaluate hypotheses of the foreground state. When the image masks for foreground objects are provided in training, the detectors can also produce object segmentation. Methods for generating a representative sample set of detectors are proposed that can enable efficient detection and tracking. In addition, because individual detectors verify hypotheses of foreground state, they can also be incorporated in a tracking-by-detection frame work to recover foreground state in image sequences. To run the detectors efficiently at the online stage, an input-sensitive speedup strategy is proposed to select the most relevant detectors quickly. The proposed approach is tested on data sets of human hands, vehicles and human faces. On all data sets, the proposed approach achieves improved detection accuracy over the best competing approaches.;In the second part of the thesis, we formulate a filter-and-refine scheme to speed up recognition processes. The binary outputs of the weak classifiers in a boosted detector are used to identify a small number of candidate foreground state hypotheses quickly via Hamming distance or weighted Hamming distance. The approach is evaluated in three applications: face recognition on the face recognition grand challenge version 2 data set, hand shape detection and parameter estimation on a hand data set, and vehicle detection and estimation of the view angle on a multi-pose vehicle data set. On all data sets, our approach is at least five times faster than simply evaluating all foreground state hypotheses with virtually no loss in classification accuracy.
机译:对象检测和识别是计算机视觉中的重要问题。这些问题的挑战来自噪声,背景杂波的存在,对象类别的类别变化较大以及训练数据有限。另外,识别过程中的计算复杂度在实践中也是关注的问题。在本文中,我们提出了一种方法来解决检测具有较大类内差异的对象类的问题,并提出第二种方法来加快分类过程。在第一种方法中,我们展示了前景-背景分类(检测)和前景类的类内分类(姿势估计)可以使用两个核函数的乘法形式共同解决。一个内核测量前景-背景分类的相似性。另一个内核考虑了潜在因素,这些潜在因素控制着类内部的变化,并隐含地启用了前景训练样本之间的特征共享。对于无法在类内状态进行显式参数化的应用程序,可以使用适当的前景距离/相似性度量来构造内核的非参数公式。通过标准支持向量机学习来完成检测器训练。生成的检测器被调整为前景类的特定变化。它们还用于评估前景状态的假设。在训练中提供前景物体的图像遮罩时,检测器还可以产生物体分割。提出了用于生成检测器的代表性样本集的方法,其能够实现有效的检测和跟踪。此外,由于各个检测器会验证前景状态的假设,因此它们也可以并入“逐检测跟踪”框架中,以恢复图像序列中的前景状态。为了在在线阶段有效地运行检测器,提出了一种输入敏感的加速策略,以快速选择最相关的检测器。在人的手,车辆和人脸的数据集上对提出的方法进行了测试。在所有数据集上,提出的方法均比最佳竞争方法具有更高的检测精度。在本文的第二部分,我们制定了一种过滤和优化方案,以加快识别过程。增强检测器中弱分类器的二进制输出用于通过汉明距离或加权汉明距离快速识别少量候选前景状态假设。该方法在以下三个应用程序中进行了评估:在人脸识别大挑战版本2数据集上进行人脸识别,在手形数据集上进行手形检测和参数估计以及在多姿态车辆数据集上进行车辆检测和视角估计。在所有数据集上,我们的方法比仅评估所有前景状态假设至少快五倍,而分类精度几乎没有损失。

著录项

  • 作者

    Yuan, Quan.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号