首页> 外文学位 >Biomimetic visual navigation architectures for autonomous intelligent systems.
【24h】

Biomimetic visual navigation architectures for autonomous intelligent systems.

机译:用于自主智能系统的仿生视觉导航架构。

获取原文
获取原文并翻译 | 示例

摘要

Intelligent systems with even the bare minimum of sophistication require extensive computational power and complex processing units. At the same time, small insects like flies are adept at visual navigation, target pursuit, motionless hovering flight, and obstacle avoidance. Thus, biology provides engineers with an unconventional approach to solve complicated engineering design problems. Computational models of the neuronal architecture of the insect brain can provide algorithms for the development of software and hardware to accomplish sophisticated visual navigation tasks. In this research, we investigate biologically-inspired collision avoidance models primarily based on visual motion. We first present a comparative analysis of two leading collision avoidance models hypothesized in the insect brain. The models are simulated and mathematically analyzed for collision and non-collision scenarios. Based on this analysis it is proposed that along with the motion information, an estimate of distance from the obstacle is also required to reliably avoid collisions. We present models with tracking capability as solutions to this problem and show that tracking indirectly computes a measure of distance. We present a camera-based implementation of the collision avoidance models with tracking. The camera-based system was tested for collision and non-collision scenarios to verify our simulation claims that tracking improves collision avoidance. Next, we present a direct approach to estimate the distance from an obstacle by utilizing non-directional speed. We describe two simplified non-directional speed estimation models: the non-directional multiplication (ND-M) sensor, and the non-directional summation (ND-S) sensor. We also analyze the mathematical basis of their speed sensitivity. An analog VLSI chip was designed and fabricated to implement these models in silicon. The chip was fabricated in a 0.18 mum process and its characterization results are reported here. As future work, the tracking algorithm and the collision avoidance models may be implemented as a sensor chip and used for autonomous navigation by intelligent systems.
机译:复杂程度极低的智能系统需要强大的计算能力和复杂的处理单元。同时,像苍蝇这样的小昆虫也擅长于视觉导航,目标追踪,不动的盘旋飞行和避障。因此,生物学为工程师提供了一种非常规的方法来解决复杂的工程设计问题。昆虫大脑神经元结构的计算模型可以提供用于开发软件和硬件以完成复杂的视觉导航任务的算法。在这项研究中,我们主要基于视觉运动研究了生物学启发的碰撞避免模型。我们首先对昆虫脑中假设的两种主要的避撞模型进行比较分析。针对碰撞和非碰撞场景对模型进行了仿真和数学分析。基于该分析,建议连同运动信息一起,还需要估计距障碍物的距离,以可靠地避免碰撞。我们提出了具有跟踪能力的模型作为该问题的解决方案,并表明跟踪间接计算了距离的度量。我们提出了基于摄像机的防撞模型的跟踪实现。该基于摄像头的系统已针对碰撞和非碰撞场景进行了测试,以验证我们的模拟声称跟踪可改善碰撞避免率。接下来,我们提出一种直接方法,通过利用非定向速度来估计到障碍物的距离。我们描述了两个简化的非定向速度估计模型:非定向乘法(ND-M)传感器和非定向求和(ND-S)传感器。我们还分析了其速度敏感性的数学基础。设计并制造了模拟VLSI芯片,以在硅中实现这些模型。该芯片采用0.18微米工艺制造,其特性结果报告在这里。作为未来的工作,跟踪算法和防撞模型可以实现为传感器芯片,并用于智能系统的自主导航。

著录项

  • 作者

    Pant, Vivek.;

  • 作者单位

    The University of Arizona.$bElectrical & Computer Engineering.;

  • 授予单位 The University of Arizona.$bElectrical & Computer Engineering.;
  • 学科 Engineering Electronics and Electrical.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号