首页> 外文学位 >Witten Laplacian methods for critical phenomena.
【24h】

Witten Laplacian methods for critical phenomena.

机译:关键现象的维滕拉普拉斯方法。

获取原文
获取原文并翻译 | 示例

摘要

It is well known that very few models of interacting systems particularly those in dimension higher than two, can be solved exactly. The mean-field treatment is the first step in approximate calculations for such models. Although mean-field approximation leads to sufficiently accurate results of the thermodynamic properties of these systems away from critical points, most often it fails miserably close to the critical points. In this thesis, we propose to study direct methods (not based on any mean-field type approximations) for proving the exponential decay of the two point-correlation functions and the analyticity of the pressure (free energy per unit volume) for models of Kac type. The methods are based on the Helffer-Sjostrand formula for the covariance in terms of Witten's Laplacians.
机译:众所周知,很少能精确地解决交互系统的模型,特别是那些尺寸大于两个的系统。在这种模型的近似计算中,均场处理是第一步。尽管平均场逼近可得出这些系统远离临界点的热力学特性的足够准确的结果,但大多数情况下,它在临界点附近通常会惨败。在本文中,我们建议研究直接方法(不基于任何均值场近似),以证明两个点相关函数的指数衰减以及Kac模型的压力(单位体积自由能)的解析度。类型。这些方法基于维顿拉普拉斯协方差的Helffer-Sjostrand公式。

著录项

  • 作者

    Lo, Assane.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号