首页> 外文学位 >Modeling light scattering from biological cells using a finite-difference time domain method.
【24h】

Modeling light scattering from biological cells using a finite-difference time domain method.

机译:使用有限差分时域方法对生物细胞的光散射进行建模。

获取原文
获取原文并翻译 | 示例

摘要

The effect of cell morphology on light scattering is investigated using computer simulations. A parallel implementation of the finite-difference time domain (FDTD) method has been developed to simulate the scattering and obtain various scattering properties such as the Mueller matrix and anisotropy factor. In addition, a program which produces 3D cell models for the FDTD program has been developed. Scattering from realistic red blood cell (RBC) and B-cell precursor (B-cell) models has been simulated and the results are compared with those of the simpler sphere and coated sphere models. The RBC models are based on models developed from mechanical principles which impose constraints on the volume and surface area of an RBC under pressure. The B-cell models are created by taking confocal microscopy images of cultured NALM6 cells and applying statistical and geometric methods to produce a realistic 3D model. Validation of the FDTD program against Mie theory results are presented along with performance evaluations on three different parallel computing platforms. Simulations of the more realistic cell models show that the sphere models are not suitable for determining most of the scattering properties; however, a more complex ellipsoid model provides a good approximation for some scattering properties. It was also found that the amount of forward scattered light is closely related to the volume of the cell, while light scattered toward the side is more closely related to the refractive index. Simulations using various nucleus models show that the complexity of the shape of the nucleus and its relative refractive index influence the light scattering in various ways. A comparison with experimental results for cultured NALM6 cells is also presented.
机译:使用计算机模拟研究了细胞形态对光散射的影响。已经开发了并行执行的有限差分时域(FDTD)方法,以模拟散射并获得各种散射特性,例如Mueller矩阵和各向异性因子。另外,已经开发了产生用于FDTD程序的3D单元模型的程序。模拟了现实红细胞(RBC)和B细胞前体(B细胞)模型的散射,并将结果与​​较简单的球体模型和包被球体模型进行了比较。 RBC模型基于从机械原理发展而来的模型,该力学原理对压力下RBC的体积和表面积施加了约束。通过拍摄培养的NALM6细胞的共聚焦显微镜图像并应用统计和几何方法以生成逼真的3D模型来创建B细胞模型。提出了针对Mie理论结果的FDTD程序验证以及在三个不同的并行计算平台上的性能评估。对更实际的单元模型的仿真表明,球形模型不适合确定大多数散射特性;但是,更复杂的椭球模型为某些散射特性提供了很好的近似值。还发现前向散射光的量与晶胞的体积密切相关,而向侧面散射的光与折射率更紧密相关。使用各种原子核模型的仿真表明,原子核形状的复杂性及其相对折射率会以各种方式影响光散射。还提出了与培养的NALM6细胞实验结果的比较。

著录项

  • 作者

    Brock, R. Scott.;

  • 作者单位

    East Carolina University.;

  • 授予单位 East Carolina University.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号