首页> 外文学位 >Development, analysis and numerical methods for multicomponent, multiphase flow in porous media.
【24h】

Development, analysis and numerical methods for multicomponent, multiphase flow in porous media.

机译:多孔介质中多组分多相流的开发,分析和数值方法。

获取原文
获取原文并翻译 | 示例

摘要

In my scientific research I have concentrated on numerical methods for partial differential equations and their applications to multiphase, multicomponent flows in porous media. A fractured porous medium has throughout its extent a system of interconnected fractures dividing the medium into a series of essentially disjointed blocks of porous rock, called matrix blocks. It has two main length of scales of interest: the microscopic scale of the fracture thickness about (10-4 m) and the macroscopic scale of the average distance between fracture planes, i.e., the size of the matrix blocks(about 0.1-1 m). Since the entire porous medium is about (10 3-104m) across, flow can be mathematically simulated only in some averaged sense. The concept of dual porosity (and dual porosity/permeability) has been utilized to model the flow of fluids on its various scales. In this concept, the fracture system is treated as a porous structure distinct from the usual porous structure of the matrix itself. The fracture system is highly permeable, but can store very little fluid, while the matrix has the opposite characteristics. When developing a dual-porosity model, it is critical to treat the flow transfer terms between the fracture and matrix systems.;In the first part of this thesis we have worked on multiphase, multicomponent flow with mass interchange between phases in porous media. The governing equations of a compositional model for three-phase multicomponent fluid flow in multi-dimensional petroleum reservoirs have been cast in terms of a pressure equation and a set of component mass balance equations in this project. The procedure is based on a pore volume constraint for component partial molar volumes, which is different from earlier techniques utilizing an equation of state for phase fluid volumes or saturations. The present technique simplifies the pressure equation, which is written in terms of various pressures such as phase, weighted fluid, global, and pseudo-global pressures. The different formulations resulting from these pressures have been numerically solved; the numerical computations use a scheme based on the mixed finite element method for the pressure equation and the finite volume method for the component mass balance equations. A qualitative analysis of these formulations have been also carried out. The analysis shows that the differential system of these formulations is of mixed parabolic-hyperbolic type, typical for fluid flow equations in petroleum reservoirs. Numerical experiments based on the benchmark problem of the third comparative solution project organized by the society of petroleum engineers(SPE)have been presented.;In the second part we have derived well flow models for various numerical methods used in the discretization of fluid flows and transport in porous media. Numerical simulation of fluid flow and transport processes in the subsurface must account for the presence of wells. The pressure at a grid block that contains a well is different from the average pressure in that block and different from the flowing bottom hole pressure for the well. Various finite difference well models had been developed to account for the difference. This part has been concerned with a systematical derivation of well models for other numerical methods such as standard finite element, control volume finite element, and mixed finite element methods. Numerical results for a simple well example illustrating local grid refinement effects and the seventh comparative solution project organized by the society of petroleum engineers(SPE) have been given to validate these well models. The well models have particular applications to groundwater hydrology and petroleum reservoirs.;Therefore, my dissertation will include the derivation of flow models, their qualitative analysis, the development of numerical methods, and their analysis. Future research will involve the development of computational codes and their parallel versions, and extensions of the mathematical modeling, numerical methods, scientific computing, computer simulation, and the supporting mathematical analysis from ordinary porous media to fractured porous media.
机译:在我的科学研究中,我专注于偏微分方程的数值方法及其在多孔介质中多相,多组分流动中的应用。破裂的多孔介质在其整个范围内具有相互连接的裂缝系统,将这些介质分为一系列基本分离的多孔岩石块,称为基质块。它具有两个主要的感兴趣尺度长度:裂缝厚度的微观尺度(约10-4 m)和裂缝平面之间平均距离的宏观尺度,即基质块的大小(约0.1-1 m)。 )。由于整个多孔介质的宽度约为(10 3-104m),因此只能在某种平均意义上对流量进行数学模拟。双重孔隙率(和双重孔隙率/渗透率)的概念已被用来模拟各种规模的流体流动。在这个概念中,将断裂系统视为不同于基质本身通常的多孔结构的多孔结构。裂缝系统具有高渗透性,但只能储存很少的流体,而基质具有相反的特征。开发双孔隙度模型时,处理裂缝和基质系统之间的流动传递条件至关重要。在本论文的第一部分中,我们研究了多孔介质中各相之间质量交换的多相,多组分流。在该项目中,根据压力方程和一组组分质量平衡方程,建立了多维多相油藏中三相多组分流体组成模型的控制方程。该程序基于对组分部分摩尔体积的孔体积约束,这与早期的技术相比,后者采用了状态流体相或体积饱和度的状态方程。本技术简化了压力方程式,该方程式是根据各种压力(例如相压力,流体加权压力,全局压力和拟全局压力)编写的。由这些压力产生的不同公式已得到数值解决;数值计算使用基于混合有限元法的压力方程式和基于有限体积法的成分质量平衡方程式的方案。还对这些制剂进行了定性分析。分析表明,这些配方的微分系统是混合抛物线-双曲线型的,通常用于石油储层的流体流动方程。基于石油工程师协会(SPE)组织的第三个比较解决方案项目的基准问题,进行了数值试验。第二部分,我们导出了用于流体离散化的各种数值方法的井流模型。在多孔介质中运输。地下流体流动和传输过程的数值模拟必须考虑井的存在。包含井的网格模块上的压力不同于该模块中的平均压力,也不同于该井的流动井底压力。已经开发了各种有限差分井模型来解释差异。这部分涉及系统地推导其他数值方法(例如标准有限元,控制体积有限元和混合有限元方法)的油井模型。给出了一个简单的油井实例的数值结果,该油井实例说明了局部网格的细化效果,并给出了由石油工程师协会(SPE)组织的第七个比较解决方案项目,以验证这些油井模型。井眼模型在地下水水文和石油储层中具有特殊的应用。因此,本文的研究内容包括流动模型的推导,定性分析,数值方法的发展及其分析。未来的研究将涉及计算代码及其并行版本的开发,以及数学建模,数值方法,科学计算,计算机仿真的扩展,以及从普通多孔介质到破裂多孔介质的辅助数学分析。

著录项

  • 作者

    Zhang, Youqian.;

  • 作者单位

    Southern Methodist University.;

  • 授予单位 Southern Methodist University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号