首页> 外文学位 >Prodrug development and the role of reactive oxygen species in beta-lapachone-mediated cell death.
【24h】

Prodrug development and the role of reactive oxygen species in beta-lapachone-mediated cell death.

机译:前药的发展和活性氧在β-拉帕酮介导的细胞死亡中的作用。

获取原文
获取原文并翻译 | 示例

摘要

beta-Lapachone, an o-naphthoquinone, is a novel chemotherapeutic and radiosensitizing agent that targets cancer versus normal cells due to endogenous overexpression (5- to 20-fold) of NAD(P)H:quinone oxidoreductase 1 (NQO1). A deficiency, or inhibition, of NQO1 renders cells resistant to beta-lapachone. Since NQO1 is inducible in mammalian cells after ionizing or UV radiation, or after tamoxifen treatment, beta-lapachone has great potential for treating specific cancers with elevated/inducible NQO1 levels (e.g. breast, non-small cell lung, pancreas, colon and prostate cancers). Many normal tissues express low levels of NQO1 that may "bioactivate" beta-lapachone and cause unwanted side effects. Also, beta-lapachone is a hydrophobic molecule that may not circulate well when administered systemically. A prodrug form of beta-lapachone that becomes active in a tumor specific manner, and is also more soluble in aqueous solutions may circumvent these problems. We hypothesize that beta-lapachone, or a prodrug form of beta-lapachone, will be efficacious against cancers that overexpress NQO1. Furthermore, we propose that reactive oxygen species (ROS) production due to beta-lapachone bioactivation by NQO1 is necessary, but not sufficient, for cancer cell death.; We report the development of mono(arylimino) derivatives of beta-lapachone as potential prodrugs. These derivatives undergo hydrolytic conversion to beta-lapachone at rates dependent on the electron-withdrawing strength of their substituent groups and pH of the diluent. Once converted, beta-lapachone derivatives caused NQO1-dependent, micro-calpain-mediated cell death in cancer cells identical to that caused by beta-lapachone. Interestingly, co-administration of N-acetyl-L-cysteine (NAC), an efficient reactive oxygen scavenger, prevented derivative-induced cytotoxicity by direct modification, preventing their conversion to beta-lapachone. NAC did not affect beta-lapachone lethality.; The use of beta-lapachone mono(arylimino) prodrug derivatives, or more specifically a derivative converted in a tumor-specific manner (i.e., in the acidic local environment of the tumor tissue), should reduce normal tissue toxicity while eliciting tumor-selective cell killing by NQO1 bioactivation.; We demonstrated that NQO1 reduced beta-lapachone to an unstable hydroquinone that rapidly underwent a two-step oxidation back to beta-lapachone. Here, we show that the resultant futile cycling consumes oxygen (O2) and generates ROS. One mole of beta-lapachone induced the consumption of ∼2 moles of O2 within 30 minutes. Inhibition of this robust redox cycling required high NAC concentrations or overexpression of manganese superoxide dismutase with NQO1 modulation by dicoumarol. This ROS formation led to DNA damage, poly(ADP-ribose) polymerase-1 hyperactivation, NAD+/ATP depletion and cell death. ROS generation was upstream of subsequent cytosolic calcium increases. Since BAPTA-AM spared survival, but not redox cycling, beta-lapachone-mediated ROS formation appears necessary, but not sufficient to induce cell death. Knowledge of NQO1-dependent ROS formation by beta-lapachone will be used to improve therapy with this compound.
机译:β-Lapachone是一种邻萘醌,是一种新型的化学疗法和放射增敏剂,由于NAD(P)H:醌氧化还原酶1(NQO1)的内源性过表达(5至20倍)而针对癌症细胞和正常细胞。 NQO1的缺乏或抑制使细胞对β-拉帕酮具有抗性。由于NQO1在电离或紫外线辐射后或他莫昔芬治疗后可在哺乳动物细胞中诱导,因此β-拉帕酮具有治疗NQO1水平升高/可诱导的特定癌症的巨大潜力(例如乳腺癌,非小细胞肺癌,胰腺癌,结肠癌和前列腺癌) )。许多正常组织表达的NQO1含量低,可能会“生物激活”β-拉帕酮并引起不良的副作用。同样,β-拉帕酮是一种疏水性分子,当全身给药时可能无法很好地循环。 β-拉帕酮的前药形式以肿瘤特异性方式起作用,并且也更易溶于水溶液,可以避免这些问题。我们假设β-lapachone或β-lapachone的前药形式将对过表达NQO1的癌症有效。此外,我们提出由于NQO1引起的β-lapachone生物活化而产生的活性氧(ROS)对于癌细胞的死亡是必要的,但还不够。我们报告开发的β-拉帕酮单(芳基)衍生物作为潜在的前药。这些衍生物以取决于其取代基的吸电子强度和稀释剂的pH的速率进行水解转化为β-拉帕酮。一旦转化,β-lapachone衍生物在癌细胞中引起NQO1依赖性微钙蛋白酶介导的细胞死亡,与β-lapachone相同。有趣的是,N-乙酰-L-半胱氨酸(NAC)的共同给药是一种有效的活性氧清除剂,可通过直接修饰防止衍生物诱导的细胞毒性,从而防止其转化为β-拉帕酮。 NAC不会影响β-拉帕酮的致死率。使用β-拉帕酮单(芳基)药物前体衍生物,或更具体而言,以肿瘤特异性方式转化的衍生物(即在肿瘤组织的酸性局部环境中),应降低正常组织的毒性,同时诱发肿瘤选择性细胞通过NQO1生物激活杀死。我们证明了NQO1将β-拉帕酮还原为不稳定的对苯二酚,该氢醌迅速经历了两步氧化反应回到β-拉帕酮。在这里,我们证明了最终的无效循环消耗了氧气(O2)并生成了ROS。 1摩尔β-拉帕酮可在30分钟内消耗约2摩尔O2。要抑制这种强大的氧化还原循环,需要高NAC浓度或用双香豆酚调节NQO1来过度表达锰超氧化物歧化酶。 ROS的形成导致DNA损伤,聚(ADP-核糖)聚合酶-1过度活化,NAD + / ATP耗竭和细胞死亡。 ROS的产生是随后胞质钙增加的上游。由于BAPTA-AM可以幸免于难,而不能进行氧化还原循环,因此β-拉帕酮介导的ROS的形成似乎是必要的,但不足以诱导细胞死亡。 β-拉帕酮对NQO1依赖性ROS形成的知识将用于改善该化合物的治疗。

著录项

  • 作者

    Reinicke, Kathryn Estelle.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Biology Cell.; Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学 ; 生物化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号