首页> 外文学位 >Time-resolved terahertz spectroscopy of bulk and nanoscale semiconductors.
【24h】

Time-resolved terahertz spectroscopy of bulk and nanoscale semiconductors.

机译:大块和纳米级半导体的时间分辨太赫兹光谱。

获取原文
获取原文并翻译 | 示例

摘要

The nature of charge carrier dynamics and conduction in bulk and nanoscale semiconducting materials is investigated with time-resolved terahertz (THz) spectroscopy (TRTS). This powerful technique uses picosecond (10-12 s) pulses of far-infrared light to map the electrodynamic response of a photoexcited material in the 0.2 - 3 THz (1012 Hz) frequency range on ultrafast time scales.;Fundamental conduction mechanisms are investigated in dilute nitride and bismide alloys of GaAs, materials of interest for optoelectronic devices. We find that while both nitrogen and bismuth incorporation reduces the fundamental energy bandgap of GaAs, bismuth does so without deteriorating the electrical properties whereas nitrogen severely reduces the electron mobility, limiting its usefulness in future devices. This is the first measurement of electron mobility in GaAsBi, and the results should have a significant impact on the optoelectronic device community.;The inherent sensitivity of the THz pulse to the conductivity of a material, sub-picosecond resolution, and noncontact nature make time-resolved terahertz spectroscopy an ideal technique for investigating carrier capture dynamics in semiconductor nanostructures. In this work, we demonstrate how THz pulses can be used to monitor this capture process directly in both quantum dot and quantum wire structures. We further show how the THz polarization can be used to probe a photoconductive anisotropy arising from a linear ordering of both quantum wire and dot-chain systems.;Finally, we investigate how the confinement of charge carriers influences the electrodynamics of silicon films by varying the degree of structural disorder. A transition from free to localized behaviour is observed from bulk, crystalline silicon to silicon nanocrystals embedded in glass. The transition from metal-to-insulator can be observed directly as a suppression of the low frequency real conductivity, and can be explained using a model based on carrier backscattering.;We show how TRTS can be used to extract the complex conductivity of a material induced by a femtosecond pump pulse, just picoseconds after excitation. A case study of a standard III-V semiconductor, GaAs, is presented to establish a baseline for TRTS in the Ultrafast Spectroscopy lab at the University of Alberta.
机译:使用时间分辨太赫兹(THz)光谱(TRTS)研究了块状和纳米级半导体材料中载流子动力学和传导的性质。这项强大的技术使用皮秒(10-12 s)的远红外脉冲在超快的时间尺度上绘制0.2-3 THz(1012 Hz)频率范围内的光激发材料的电动力响应。;研究了基本的传导机制GaAs的氮化物和铋的稀合金,是光电子器件的重要材料。我们发现,尽管氮和铋的掺入都降低了GaAs的基本能带隙,但铋却没有降低电性能,而氮却严重降低了电子迁移率,从而限制了其在未来器件中的用途。这是对GaAsBi中电子迁移率的首次测量,其结果应对光电器件界产生重大影响。; THz脉冲对材料电导率的固有灵敏度,亚皮秒分辨率和非接触性质会使时间变长分辨太赫兹光谱法是研究半导体纳米结构中载流子捕获动力学的理想技术。在这项工作中,我们演示了如何使用THz脉冲直接在量子点和量子线结构中监视捕获过程。我们进一步展示了如何使用THz极化来探测由量子线和点链系统的线性排序引起的光电导各向异性。最后,我们研究了电荷载流子的限制如何通过改变硅的电动力学来影响硅膜的电动力学。结构障碍的程度。从块状晶体硅向嵌入玻璃中的硅纳米晶体观察到从自由行为到局部行为的转变。从金属到绝缘体的转变可以直接观察到对低频真实电导率的抑制,并且可以使用基于载流子反向散射的模型来解释。;我们展示了如何使用TRTS来提取材料的复数电导率。由飞秒泵浦脉冲激发,仅在激发后皮秒。在阿尔伯塔大学的超快光谱实验室中,对III-V标准半导体GaAs进行了案例研究,为TRTS建立了基线。

著录项

  • 作者

    Cooke, David G.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号