首页> 外文学位 >Actuation design and implementation for lower extremity human exoskeletons.
【24h】

Actuation design and implementation for lower extremity human exoskeletons.

机译:下肢人体骨骼的致动设计和实现。

获取原文
获取原文并翻译 | 示例

摘要

Heavy objects are typically transported by vehicles, carts, and other wheeled devices. However, many environments, such as rocky slopes and staircases, pose significant challenges to wheeled vehicles. Within these settings, legged locomotion becomes an attractive method of transportation, since legs can adapt to a wide range of extreme terrains. But autonomous walking robots have significant difficulty in balancing and navigating in rough, unpredictable terrain. Lower extremity human exoskeletons seek to avoid many of the limitations of autonomous legged robots by adding a human operator to the system. By combining the strength capabilities of robotics with the navigational intelligence and adaptability of humans, exoskeletons allow people to carry heavy loads over rough, unstructured, and uncertain terrains. This dissertation focuses on design and implementation of the actuation system for the exoskeleton. Since the exoskeleton is inherently human-sized, its actuation must support human-scale payloads without becoming excessively heavy or large, as to impede or cause discomfort to the operator. Additionally, because the exoskeleton operates autonomously, minimizing power consumption is critical to the robot's success.; Specifically, this dissertation covers the hydraulic and electric actuation developed for the lower extremity exoskeletons along with a novel power regeneration scheme that generates power normally dissipated by human locomotion. The hydraulic exoskeleton (BLEEX) is the first autonomous, load carrying lower extremity exoskeleton to ever successfully walk. The electrically actuated exoskeleton attempts to provide more joint power, but consume less power than the hydraulic actuation. Both actuation schemes are designed based on Clinical Gait Analysis (CGA) data. In an attempt to further improve power efficiency, a new power regeneration concept is developed and tested on a 3rd generation electro-hydraulically actuated exoskeleton. Unlike other attempts to generate power from human walking, this method only regenerates power that is typically dissipated by human muscles. Overall, this dissertation introduces new actuation design methods for high-powered legged robotics with a focus on compactness and power efficiency.
机译:重物通常由车辆,手推车和其他轮式设备运输。然而,许多环境,例如岩石斜坡和楼梯,对轮式车辆构成了重大挑战。在这些情况下,腿式运动成为一种有吸引力的运输方式,因为腿可以适应各种极端地形。但是自主行走机器人很难在崎rough,不可预测的地形中平衡和导航。下肢人体骨骼通过在系统中增加人工操作,力图避免自动腿式机器人的许多局限性。通过将机器人技术的强大功能与人类的导航智能和适应能力相结合,外骨骼使人们能够在崎,、非结构化和不确定的地形上承受沉重的负担。本文主要研究外骨骼致动系统的设计与实现。由于外骨骼本质上是人类大小的,因此它的致动必须支持人类规模的有效载荷,而不会变得过重或过大,以阻止或引起操作员不适。另外,由于外骨骼是自主运行的,因此最大限度地降低功耗对机器人的成功至关重要。具体来说,本论文涵盖了为下肢外骨骼开发的液压和电动驱动器,以及一种新颖的动力再生方案,该方案可产生通常由人类运动耗散的动力。液压外骨骼(BLEEX)是第一个成功行走的自主式,负重下肢外骨骼。电动外骨骼试图提供更多的联合动力,但比液压动力消耗更少的动力。两种驱动方案都是基于临床步态分析(CGA)数据设计的。为了进一步提高功率效率,开发了新的功率再生概念,并在第三代电液驱动外骨骼上进行了测试。与其他尝试通过人类步行产生动力的尝试不同,此方法只能再生通常由人体肌肉耗散的力量。总体而言,本文介绍了针对高功率腿式机器人的新型致动设计方法,重点是紧凑性和功率效率。

著录项

  • 作者

    Zoss, Adam Brian.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.; Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号