首页> 外文学位 >Structural basis of why thermophilic enzymes are more sluggish at moderate temperatures.
【24h】

Structural basis of why thermophilic enzymes are more sluggish at moderate temperatures.

机译:中温酶为什么迟钝的结构基础。

获取原文
获取原文并翻译 | 示例

摘要

It has been observed that thermophilic enzymes are often more sluggish at lower temperatures but comparable active as their mesophilic homologues at their corresponding living temperatures. Although these thermophilic enzymes exhibit high structural stability, the increased stability leads to a decreased flexibility of the thermophilic enzymes in return. To yield further advances in analysis of the interrelationships between flexibility and activity of enzymes, also the molecular basis of enzyme adaptation, we used a pair of thermo-meso acylphosphatase homologues with high level of similarity isolated from hyperthermophilic archeaon Pyrococcus horikoshii (PhAcP) and human (HuAcP) as model to study this issue. Despite the fact that their active-site residues are highly conserved, activity (kcat) of PhAcP is remarkably reduced compared with HuAcP at low temperatures. Based on crystal structure comparison, an extra salt bridge was formed between active site residue and C-terminus of PhAcP. To examine the role of salt bridge plays in catalytic reaction of AcPs, we designed a mutant PhG91A to disrupt the salt bridge in thermophilic PhAcP. In parallel, a salt bridge was re-engineered into mesophilic HuAcP to create HuA99K. Interestingly, the thermophilic variant PhG91A exhibited a more mesophilic-like manner in terms of activity and thermodynamic parameters. On the contrary, mesophilic HuA99K displayed a more thermophilic-like character. This is supplemented by detailed molecular dynamics (MD) simulations, revealing good qualitative agreement with experimental findings. Both theory and experiment results had provided evidences that the presence of a specific salt bridge is directly associated with the temperature adaptation of AcPs by reducing the catalytic site flexibility.
机译:已经观察到,嗜热酶在较低温度下通常更慢,但是在其相应的生活温度下具有与其嗜温同源物相当的活性。尽管这些嗜热酶表现出高的结构稳定性,但是增加的稳定性导致嗜热酶的柔韧性降低。为了进一步分析酶的灵活性和活性之间的相互关系,以及酶适应的分子基础,我们从嗜热古生热球菌(PhAcroccus horikoshii,PhAcP)和人类中分离出一对具有高度相似性的热-介观酰基磷酸酶同系物。 (HuAcP)作为研究此问题的模型。尽管事实上它们的活性位点残基是高度保守的,但是与HuAcP在低温下相比,PhAcP的活性(kcat)明显降低。根据晶体结构比较,在活性位点残基和PhAcP的C端之间形成了一个额外的盐桥。为了检查盐桥在AcPs催化反应中的作用,我们设计了一个突变型PhG91A来破坏嗜热PhAcP中的盐桥。同时,将盐桥重新工程化为嗜温的HuAcP以创建HuA99K。有趣的是,嗜热变体PhG91A在活性和热力学参数方面表现出更类似嗜温的方式。相反,嗜温的HuA99K显示出更类似嗜热的特征。这还辅以详细的分子动力学(MD)模拟,揭示了与实验结果的良好定性一致性。理论和实验结果均提供了证据,表明特定盐桥的存在通过降低催化位点的柔性而直接与AcP的温度适应性相关。

著录项

  • 作者

    Lam, Yan.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号