首页> 外文学位 >Centrifuge modeling of pile foundation response to liquefaction and lateral spreading: Study of sand permeability and compressibility effects using scaled sand technique.
【24h】

Centrifuge modeling of pile foundation response to liquefaction and lateral spreading: Study of sand permeability and compressibility effects using scaled sand technique.

机译:桩基础对液化和横向扩展的离心模型:利用定尺砂技术研究砂的渗透性和可压缩性。

获取原文
获取原文并翻译 | 示例

摘要

Great effort has been made by several researchers to understand the failure mechanism of pile foundations subjected to liquefaction induced lateral spreading. With the aim of formulating better design methods, a number of centrifuge model tests on piles in liquefied sand have been made since 1964, especially since the pile damage at Kobe became apparent. Centrifuge tests have clearly shown that the permeability of the liquefiable soil is a key factor. In principle there are two ways to model the prototype soil's permeability in the centrifuge. One of them is to increase the viscosity of the pore fluid used in the model while using the same soil in model and prototype. The second way is to use a soil in the centrifuge model which has a finer grain size but is otherwise similar to the prototype sand, and use water as the pore fluid in the centrifuge. As demonstrated in this research, the second method, to be referred to as the Scaled Sand Technique, is able to simulate similar pile behavior to centrifuge tests conducted by increasing the viscosity of the pore fluid, only when the permeability and compressibility of the soils are matched. The previous observation includes a second key factor in the simulation of lateral spreading and the effect on pile foundations: the soil compressibility. This research has shown that the maximum bending moment in a single pile subjected to lateral spreading will tend to decrease when the permeability or compressibility of the liquefied soil increases. The effect of increased soil permeability and compressibility in reducing the bending moment seem to have the same common origin. That is, a liquefied soil of higher permeability and compressibility will induce less pore pressure reductions around the pile and will dissipate these pore pressure reductions more rapidly. Analytical and design procedures need to be developed that account for the influence of these and other factors on those pore pressure reductions near the pile. Current analytical and design methods based partially on centrifuge modeling, but which ignore the influence of the excess pore pressure reduction on pile foundation response, and especially those which do not take into account the wide range of bending moments that may occur due to the influence of the permeability and compressibility of the sand, are bound to have limited predictive power.
机译:几位研究人员已经做出了巨大的努力,以了解液化引起的横向扩展所引起的桩基的破坏机理。为了制定更好的设计方法,自1964年以来,特别是在神户的桩头损坏变得明显之后,对液化沙子中的桩进行了许多离心机模型试验。离心测试清楚地表明,液化土壤的渗透性是关键因素。原则上,有两种方法可以对离心机中原型土壤的渗透性进行建模。其中之一是增加模型中使用的孔隙流体的粘度,同时在模型和原型中使用相同的土壤。第二种方法是在离心机模型中使用粒度较小但与原型砂相似的土壤,并在离心机中使用水作为孔隙流体。如本研究所示,仅在土壤的渗透性和可压缩性得到提高的情况下,第二种方法被称为“缩放砂技术”,它能够通过增加孔隙流体的粘度来模拟与离心测试相似的桩行为。匹配。先前的观察包括模拟横向扩展以及对桩基的影响的第二个关键因素:土壤可压缩性。这项研究表明,当液化土壤的渗透性或可压缩性增加时,承受横向扩展的单桩的最大弯矩将趋于减小。增加土壤渗透性和可压缩性以减少弯矩的作用似乎有相同的共同原因。即,具有较高渗透性和可压缩性的液化土壤将引起桩周围的孔隙压力降低较少,并且将更快地消除这些孔隙压力降低。需要开发分析和设计程序,以考虑到这些因素和其他因素对桩附近孔隙压力降低的影响。当前的分析和设计方法部分基于离心机建模,但是忽略了过大的孔隙压力降低对桩基础响应的影响,尤其是那些未考虑到由于弯矩影响而可能产生的大范围弯矩的方法。砂的渗透性和可压缩性必然具有有限的预测能力。

著录项

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 224 p.
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号