首页> 外文学位 >The Fabrication and Characterization of Polar/Non-polar Interfaces: ZnO, Cr2O3 and LiNbO3 {0001}
【24h】

The Fabrication and Characterization of Polar/Non-polar Interfaces: ZnO, Cr2O3 and LiNbO3 {0001}

机译:极性/非极性界面:ZnO,Cr2O3和LiNbO3的制备与表征{0001}

获取原文
获取原文并翻译 | 示例

摘要

Polar materials are non-centrosymmetric creating a net dipole within each repeating unit along certain crystallographic axis. The propagation of these dipoles will diverge without charge compensation at their surfaces. As a consequence, oppositely poled surfaces usually demonstrate distinct electronic, structural or chemical properties. The potential to induce unique, and possibly switchable, electronic, magnetic, and chemical properties at interfaces between polar and non-polar materials has motivated a great deal of research in recent years. Ferroelectric materials are an important subset of polar materials whose polarization direction can be switched by applying an external electric field. This effect allows one to envision materials with switchable surface properties.;To determine how polar substrates can influence the properties of non-polar and polar films, three major systems were exploited in this thesis: (i) non-polar chromium oxide on polar zinc oxide (Cr2O3/ZnO), (ii) polar zinc oxide on non-polar chromium oxide on polar zinc oxide (ZnO/Cr 2O3/ZnO) and (iii) polar zinc oxide on ferroelectric lithium niobate (ZnO/LiNbO3).;Ultraviolet and x-ray photoelectron spectroscopies (UPS and XPS), high resolution transmission electron microscopy (HRTEM), reflection high energy and low energy electron diffraction (RHEED and LEED), and X-ray diffraction and reflectivity (XRD and XRR) were employed to characterize the growth mode, film quality and interfacial electronic properties. Temperature programmed desorption (TPD) was used to study the surface chemistry.;First, the Cr2O3 growth on ZnO {0001} was layer-by-layer with initial disorder followed by the formation of epitaxial Cr2O 3 (0001). Despite the initial disorder, HRTEM and XRD/XRR measurements on thicker films revealed an abrupt interface with the Cr2O 3 lattice extending all the way to the interface. The polar interfaces showed a small band offset that decayed with increasing film thickness, suggesting that the compensating charges at the interface may partially migrate to the film surface. Moreover, statistical analyses of UPS valence band spectra revealed an enhanced density of states near the valence band edge for Cr2O 3 on ZnO (0001), consistent with stabilization of the positive interface by filling surface electronic states. In contrast, no significant valence band differences were observed between bulk Cr2O3 and thin Cr2O3 layers on ZnO (0001¯).;Second, the ability to affect the surface properties of non-polar Cr 2O3 films through polar ZnO (0001) and (0001¯) supports was investigated by two means: the characterization the polarity of ZnO films grown on top of the Cr2O3 and the study of 2-propanpl chemistry upon the Cr2O3 surfaces. From the first perspective, the ZnO growth mode was determined to be StranskiKrastanov (2D to 3D), which can be attributed to the ZnO layers initially adopting a non-polar structure with a lower surface tension before transitioning to the polar bulk structure with a higher surface energy. Thick Cr2O3 layers supported ZnO (0001¯) growth regardless of the underlying ZnO substrate polarization; however, the polarization direction of ZnO films grown on Cr2O 3 films less than three repeat units thick follows the direction of the underlying substrate polarization. From the second perspective, acetone was the only major product seen for < 3 Cr2O3 repeat unit thick films supported by both positively and negatively poled ZnO substrates while for thicker Cr2O3 films, enhanced propene desorption indicative of alcohol dehydration was observed for positively poled ZnO substrates. Atomic force microscopy revealed that the Cr2O3 films grown on positively poled ZnO substrates were rougher despite diffraction results that indicated epitaxial Cr2O3 growth independent of the substrate polarization direction. Thus these results suggest that the substrate polarization impacts the film only within a very short range or indirectly impacts the reactivity of the non-polar layer through the growth process which determines the density of defects in the Cr2O 3 film.;Finally, the growth of ZnO on LiNbO3 (0001) and (0001¯) polar surfaces was determined to be Stranski-Krastanov, also with a small degree of roughness at the interface. The film maintained the substrate surface crystallography initially and then transitioned to an ordered ZnO {0001} phase after passing through a disordered region. A band offset revealed by XPS indicates different charge screening mechanisms at oppositely poled interfaces and potentially charge transfer near the film-substrate interface. In addition, the reaction of 2-propanol was used as a probe to identify the polarity of thick ZnO films. The results indicate that ZnO film grown on either LiNbO3 (0001) or (0001¯) polar surfaces ultimately develops a negative polarization. Therefore, it is concluded that the LiNbO3 polar substrate has a more obvious impact over a short range near the ZnO/LiNbO3 interface but this does not translate into directing the polarization direction of thicker ZnO films.
机译:极性材料是非中心对称的,沿着某些晶体学轴在每个重复单元内产生净偶极子。这些偶极子的传播将发散,而在其表面没有电荷补偿。结果,相反极性的表面通常表现出不同的电子,结构或化学性质。近年来,在极性和非极性材料之间的界面上诱发独特的,可能可切换的电子,磁性和化学性质的潜力激发了很多研究。铁电材料是极性材料的重要子集,其极性方向可以通过施加外部电场来切换。这种效果使人们可以设想具有可切换表面性能的材料。;为了确定极性基材如何影响非极性和极性薄膜的性能,本文采用了三个主要系统:(i)极性锌上的非极性氧化铬氧化物(Cr2O3 / ZnO),(ii)在极性氧化锌上的非极性氧化铬上的极性氧化锌(ZnO / Cr 2O3 / ZnO)和(iii)在铁电铌酸锂上的极性氧化锌(ZnO / LiNbO3)。分别采用X射线光电子能谱(UPS和XPS),高分辨率透射电子显微镜(HRTEM),反射高能和低能电子衍射(RHEED和LEED)以及X射线衍射和反射率(XRD和XRR)表征生长方式,薄膜质量和界面电子特性。用程序升温脱附(TPD)技术研究表面化学。首先,ZnO {0001}上的Cr2O3层层堆积,初始紊乱,随后形成外延Cr2O 3(0001)。尽管最初存在紊乱,但在较厚的薄膜上进行的HRTEM和XRD / XRR测量显示,Cr2O 3晶格突然扩展到界面。极性界面显示出一个小的带偏移,该带偏移随膜厚度的增加而衰减,这表明界面处的补偿电荷可能会部分迁移到膜表面。此外,UPS价带光谱的统计分析显示,ZnO(0001)上Cr2O 3的价带边缘附近的态密度增加,这与通过填充表面电子态来稳定正界面相一致。相比之下,在ZnO(0001)上的块状Cr2O3和薄Cr2O3层之间没有观察到明显的价带差异;其次,通过极性ZnO(0001)和(0001)影响非极性Cr 2O3膜的表面性能的能力。 ¯)通过两种方法研究了载体:表征在Cr2O3顶部生长的ZnO膜的极性和研究Cr2O3表面的2-丙醇化学。从第一个角度来看,ZnO的生长模式确定为StranskiKrastanov(2D到3D),这可以归因于ZnO层最初采用具有较低表面张力的非极性结构,然后过渡到具有较高表面张力的极性本体结构表面能。厚的Cr2O3层支持ZnO(0001’)的生长,而与下面的ZnO衬底的极化无关。但是,在小于三个重复单元厚度的Cr2O 3膜上生长的ZnO膜的偏振方向遵循下面的衬底偏振方向。从第二个角度来看,对于正负极性ZnO衬底支撑的<3个Cr2O3重复单元厚膜,丙酮是唯一的主要产品,而对于较厚的Cr2O3膜,对于正极性ZnO衬底而言,丙烯脱附增强表明醇脱水。原子力显微镜显示,尽管衍射结果表明外延Cr2O3的生长与衬底的极化方向无关,但在正极ZnO衬底上生长的Cr2O3膜较粗糙。因此,这些结果表明,衬底的极化仅在非常短的范围内影响薄膜,或者通过生长过程间接影响非极性层的反应性,这决定了Cr2O 3薄膜中缺陷的密度。 LiNbO3(0001)和(0001′)极性表面上的ZnO被确定为Stranski-Krastanov,在界面处的粗糙度也很小。该膜最初保持衬底表面晶体学,然后在通过无序区后转变为有序的ZnO {0001}相。 XPS揭示的带偏表明在相反极性的界面处存在不同的电荷屏蔽机制,并可能在薄膜与基板界面附近发生电荷转移。另外,使用2-丙醇的反应作为探针来鉴定厚ZnO膜的极性。结果表明,在LiNbO3(0001)或(0001′)极性表面上生长的ZnO膜最终形成负极化。因此可以得出结论,LiNbO3极性基板在ZnO / LiNbO3界面附近的短距离内具有更明显的影响,但这并不能转化为引导较厚ZnO膜的极化方向。

著录项

  • 作者

    Zhu, Xiaodong.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号