首页> 外文学位 >The behavior of semiconductor nanocrystals under intense ultraviolet irradiation and shock wave compression.
【24h】

The behavior of semiconductor nanocrystals under intense ultraviolet irradiation and shock wave compression.

机译:半导体纳米晶体在强紫外线照射和冲击波压缩下的行为。

获取原文
获取原文并翻译 | 示例

摘要

The behavior of semiconductor nanocrystals under the influence of strong optical and mechanical perturbations has been studied, near the limits of the structural stability of the nanocrystals with regard to the effects of those perturbations.;Multielectron ionization of CdSe nanocrystals has been achieved using intense femtosecond UV light, and a maximum ionization yield of >30 electrons ejected from each nanoparticle was observed within the range of excitation fluences studied. The time-dependence of CdSe nanoparticle transient absorption, and transient absorption of the water-solvated ejected electrons, indicated a resonant two-photon ionization mechanism. At the highest excitation fluences used, melting of rod-shaped CdSe nanocrystals was observed, due to thermalization of the large population of electron-hole pairs generated from photoexcitation. An attempt to time resolve the melting dynamics of CdSe and CdTe nanocrystals, using second harmonic scattering as a probe of the centrosymmetry loss upon melting, led to the discovery of enhanced second harmonic scattering from photoexcited nanocrystals. A saturation in the relative enhancement per excited electron indicated the presence of a dense electron-hole plasma in the nanocrystals, which exhibited a more harmonic response to the laser field with increasing carrier density. The rapid excitation of a high density of electron-hole pairs also resulted in the generation of coherent acoustic phonons in CdSe spherical and rod-shaped nanocrystals. The phonon frequencies were not dependent upon the incident intensity, indicating the stability of the nanocrystal elastic constants during strong excitation. The phonon modes created were determined to be radial, not longitudinal, based on the lack of rod length dependence of the phonon frequency, while a frequency dependence on particle radius was observed.;The wurtzite to rocksalt polymorphic phase transformation in CdSe nanocrystals was studied using laser-induced shock waves. Under shock wave compression, the nanocrystals transformed under the influence of an applied pressure of 3.2GPa, a significantly lower pressure than the 7GPa required to transform nanocrystals under hydrostatic compression in diamond anvil cell, based on experiments performed previously.[1] Additionally, the transformation was complete within 100 picoseconds, exhibiting significantly faster kinetics than observed under hydrostatic compression. This is approaching the timescale for individual particle transformation, determined from recent simulations to be 7-50ps.[2, 3, 4] The kinetics became faster with increasing shock pressure, indicating a faster nucleation rate with higher instantaneous stress. Laser-induced shock waves were also used to induce the fracture of hollow CdS nanospheres. Hollow nanospheres exhibited a greater degree of fragmentation when subjected to a higher applied shock stress. A time resolved experiment was performed to measure the attenuation of an incident shock wave by a layer of hollow particles, which was determined to be 0.5GPa for a 2.5GPa shock. This was consistent with the fracture stress determined by a single-particle hollow sphere compression experiment.[5]
机译:研究了在强光学和机械扰动的影响下半导体纳米晶体的行为,就这些扰动的影响而言,接近纳米晶体的结构稳定性极限。在研究的激发通量范围内,观察到从每个纳米粒子喷射的> 30个电子的最大电离产率。 CdSe纳米粒子瞬态吸收和水喷射电子的瞬态吸收随时间的变化表明了共振的双光子电离机理。在使用的最高激发通量下,由于光激发产生的大量电子-空穴对的热化,观察到棒状CdSe纳米晶体熔化。尝试使用二次谐波散射作为熔化时的中心对称性损失的探针来定时解析CdSe和CdTe纳米晶体的熔融动力学,导致发现了光激发纳米晶体增强的二次谐波散射。每个激发电子相对增强的饱和表明在纳米晶体中存在致密的电子空穴等离子体,随着载流子密度的增加,其对激光场表现出更多的谐波响应。高密度电子-空穴对的快速激发也导致在CdSe球形和棒状纳米晶体中产生相干声子。声子频率与入射强度无关,表明强激发过程中纳米晶体弹性常数的稳定性。基于缺乏声子频率的棒长相关性,而观察到频率与粒子半径的相关性,确定所产生的声子模式是径向的,而不是纵向的。;研究了CdSe纳米晶体中纤锌矿到岩石盐的多晶相转变。激光引起的冲击波。在冲击波压缩下,基于先前进行的实验[1],纳米晶体在3.2GPa的施加压力的作用下发生了转化,该压力明显低于在静压压缩下在金刚石砧座中转化纳米晶体所需的7GPa压力。[1]另外,转化在100皮秒内完成,比在静水压下观察到的动力学要快得多。根据最近的模拟,这正接近单个粒子转化的时间尺度,为7-50ps。[2,3,4]随着冲击压力的增加,动力学变得更快,这表明在较高的瞬时应力下成核速率也更快。激光诱导的冲击波也被用来诱导空心CdS纳米球的破裂。中空纳米球在遭受更高的施加冲击应力时表现出更大程度的破碎。进行了时间分辨实验,测量了一层空心粒子对入射冲击波的衰减,对于2.5GPa的冲击,该值确定为0.5GPa。这与单颗粒空心球压缩实验确定的断裂应力是一致的。[5]

著录项

  • 作者

    Wittenberg, Joshua Saul.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号