首页> 外文学位 >Studies on the nanostructure, rheology and drag reduction characteristics of drag reducing cationic surfactant solutions.
【24h】

Studies on the nanostructure, rheology and drag reduction characteristics of drag reducing cationic surfactant solutions.

机译:减阻阳离子表面活性剂溶液的纳米结构,流变学和减阻特性的研究。

获取原文
获取原文并翻译 | 示例

摘要

At concentrations above CMC (critical micellization concentration) or temperatures above CMT (critical micellization temperature) surfactant molecules dissolved in aqueous solution self-assemble into colloidal aggregates such as micelles or vesicles. These colloidal aggregates vary in shape and size depending on a number of system conditions such as surfactant molecular structure, surfactant concentration, salt concentration, temperature, etc. Among the variety of micellar structures in solution, wormlike micelles resembling the long chain molecules of high polymers may reduce friction energy loss in turbulent flow by up to 90% at relatively low surfactant concentrations under appropriate flow and temperature conditions. This phenomenon is termed drag reduction (by surfactant additives) and it has significant potential impacts on fluid transport and on the environment.;Among surfactant drag reducing additives, cationic surfactants with organic counterions have received the most attention in the past two decades mainly because of their excellent drag reducing ability, broad availability, low concentration requirements and general insensitivity to ionic metal impurities. Typical cationic surfactants studied for drag reduction are quaternary ammonium salts with one long alkyl chain (carbon number from 14 to 22) and methyl or hydroxyethyl groups in the other positions. They are, however, mildly toxic with poor biodegradability, so there is a need to develop more environmentally friendly surfactant drag reducing additives. Other types of surfactants such as anionics, zwitterionics and nonionics have also been studied. To obtain desired drag reducing properties, previous research has been focused on utilizing synergistic effects that may arise when two surfactant species are mixed. Mixed surfactant systems studied for drag reduction included cationic surfactants of mixed alkyl chain lengths, cationic/anionic, nonionic/nonionic, nonionic/anionic and zwitterionic/anionic surfactant mixtures in aqueous solutions and in water/co-solvent systems.;Organic counterions added to dilute cationic surfactant aqueous solutions are effective in inducing and stabilizing wormlike micelle formation at relatively low counterion to surfactant molar ratios, thereby promoting their drag reducing effectiveness. The interactions of the cationic surfactant and organic counterion can be enhanced by tuning either or both of them, structurally and/or by concentration and molar ratio, to tailor-make highly efficient drag reducing systems suitable for different applications.;Understanding the important role of organic counterions in the dynamics of the formation of cationic surfactant wormlike micelles and their networks is important. In this work, investigations have been conducted in how changes in the organic counterion chemical structure of a series of p -halobenzoates and counterion to surfactant ratio affect zeta potential, nanostructure, drag reduction and rheological properties. Also, certain mixed aromatic counterion systems were studied which showed excellent synergistic effects on promoting wormlike micellar branched networks and enhancing drag reducing effectiveness.;In this work, an enclosed rotating disk apparatus was designed and constructed for screening novel surfactant species synthesized in chemistry laboratories. After correlating its drag reducing results with those obtained through the conventional pipe flow test system, this small scale apparatus is capable of testing materials for drag reduction effectiveness independently.;A long range goal of this research is to develop effective low concentration surfactant systems with good drag reduction effectiveness. Guided by the correlations and understandings obtained in the past research, in this work, a number of new surfactants or counterions were selected or synthesized for exploratory drag reduction tests.
机译:在高于CMC(临界胶束化浓度)的浓度或高于CMT(临界胶束化温度)的温度下,溶解在水溶液中的表面活性剂分子会自组装成胶体聚集体,例如胶束或囊泡。这些胶体聚集体的形状和大小取决于许多系统条件,例如表面活性剂分子结构,表面活性剂浓度,盐浓度,温度等。在溶液中的各种胶束结构中,类似于高聚物长链分子的蠕虫状胶束在适当的流量和温度条件下,在相对较低的表面活性剂浓度下,可将湍流中的摩擦能量损失降低90%。这种现象被称为减阻剂(通过表面活性剂添加剂),它对流体输送和环境具有重大的潜在影响。;在表面活性剂减阻剂中,带有有机抗衡离子的阳离子表面活性剂在过去的二十年中受到了最多的关注,主要是因为它们出色的减阻能力,广泛的可用性,低浓度要求以及对离子金属杂质的一般敏感性。为减少阻力而研究的典型阳离子表面活性剂是具有一个长烷基链(碳原子数为14至22)和在其他位置为甲基或羟乙基的季铵盐。但是,它们具有中等毒性,且生物降解性差,因此需要开发对环境更友好的表面活性剂减阻添加剂。还已经研究了其他类型的表面活性剂,例如阴离子,两性离子和非离子表面活性剂。为了获得所需的减阻性能,先前的研究集中在利用两种表面活性剂混合时可能产生的协同效应。研究用于减阻的混合表面活性剂系统包括水溶液和水/共溶剂体系中混合烷基链长的阳离子表面活性剂,阳离子/阴离子,非离子/非离子,非离子/阴离子和两性离子/阴离子表面活性剂混合物;稀释的阳离子表面活性剂水溶液可有效地以相对较低的抗衡离子与表面活性剂摩尔比诱导和稳定蠕虫状胶束的形成,从而提高其减阻效果。阳离子表面活性剂和有机抗衡离子的相互作用可以通过调整结构中和/或浓度和摩尔比中的一种或两种来增强,以量身定制适用于不同应用的高效减阻系统。有机抗衡离子在阳离子表面活性剂蠕虫状胶束及其网络形成动力学中很重要。在这项工作中,已经研究了一系列对卤代苯甲酸酯的有机抗衡离子化学结构的变化以及抗衡离子与表面活性剂的比率如何影响zeta电位,纳米结构,减阻和流变性能。此外,研究了某些混合芳族抗衡离子体系,这些体系在促进蠕虫状胶束支化网络和增强减阻效果方面显示出优异的协同作用。这项工作,设计并构造了一种封闭的旋转盘装置,用于筛选化学实验室合成的新型表面活性剂。在将其减阻效果与通过常规管道流量测试系统获得的减阻效果相关联之后,这种小型设备能够独立测试材料的减阻效果。;这项研究的长期目标是开发一种有效的低浓度表面活性剂系统。减阻效果。在过去的研究中获得的相关性和理解的指导下,在这项工作中,选择或合成了许多新的表面活性剂或抗衡离子用于探索性减阻试验。

著录项

  • 作者

    Ge, Wu.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 455 p.
  • 总页数 455
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

  • 入库时间 2022-08-17 11:39:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号