首页> 外文学位 >Nonlinear adaptive formation control for a class of autonomous holonomic planetary exploration rovers.
【24h】

Nonlinear adaptive formation control for a class of autonomous holonomic planetary exploration rovers.

机译:一类自主完整行星探测漫游器的非线性自适应编队控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed.;In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof.;In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover wheels in soft planetary terrain, is modeled using classical terramechanics theory. The unknown system parameters for adaptive estimation pertain to the rolling resistance forces and scrubbing resistance torques at the wheel-terrain interfaces. Novel terramechanical formulas for terrain resistance forces and torques are derived via considering the universal holonomic wheels as rigid toroidal wheels moving forward and/or sideways as well as turning on soft ground. The asymptotic stability of the formation control system is rigorously proved using Lyapunov's direct method.
机译:本文提出了一种新颖的非线性自适应编队控制器,用于在土壤类型和地表条件未知的平坦地形上导航的一组完整的行星行星探测漫游器。采用领导者跟随编队控制体系结构;第一部分,利用机器人的点质量模型和地形阻力的库仑粘滞摩擦模型,为编队开发了直接自适应控制律和编队速度自适应策略。在执行器饱和的情况下在未知且变化的地形上导航。地形摩擦参数的在线估计可补偿未知的地形阻力及其变化。在困难地形上的饱和事件中,使用内部车队通信和速度自适应策略,以最慢的饱和机器人的速度为基础降低编队速度,从而使编队误差保持有限且较小。给出了非饱和条件下地层系统渐近稳定性的形式证明。机器人控制器的性能已通过模块化3机器人编队模拟器进行了验证。仿真结果表明,在非饱和条件下,编队误差渐近地减小到零,这是理论证明所保证的。第二部分,将自适应控制方法扩展到具有三个独立驱动的一类全向漫游车的编队控制。通用完整的刚性车轮,其中包含了漫游者的刚体动力学,驱动系统的机电特性以及轮地相互作用机制。完整的漫游者能够同时且独立地平移和旋转,从而具有出色的机动性和敏捷性,使其非常适合编队航行。针对三轮驱动电机的输入电压设计了新颖的非线性自适应控制律。运动阻力是由于漫游轮在柔软的行星地形中下陷而产生的,它是使用经典的地力学理论建模的。用于自适应估计的未知系统参数涉及车轮-地形界面处的滚动阻力和擦洗扭矩。通过将通用完整的车轮视为向前和/或向侧面移动以及在软土地上转弯的刚性环形轮,得出了用于地形阻力和转矩的新颖的土力学公式。使用Lyapunov的直接方法严格证明了地层控制系统的渐近稳定性。

著录项

  • 作者

    Ganji, Farid.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号