首页> 外文学位 >A bilevel optimization approach to machine learning.
【24h】

A bilevel optimization approach to machine learning.

机译:机器学习的双层优化方法。

获取原文
获取原文并翻译 | 示例

摘要

A key step in many statistical learning methods used in machine learning involves solving a convex optimization problem containing one or more hyper-parameters that must be selected by the users. While cross validation is a commonly employed and widely accepted method for selecting these parameters, its implementation by a grid-search procedure in the parameter space effectively limits the desirable number of hyper-parameters in a model, due to the combinatorial explosion of grid points in high dimensions. A novel paradigm based on bilevel optimization approach is proposed and gives rise to a unifying framework within which issues such as model selection can be addressed.;The machine learning problem is formulated as a bilevel program---a mathematical program that has constraints which are functions of optimal solutions of another mathematical program called the inner-level program. The bilevel program is transformed to an equivalent mathematical program with equilibrium constraints (MPEC). Two alternative bilevel optimization algorithms are developed to optimize the MPEC and provide a systematic search of the hyper-parameters.;In the first approach, the equilibrium constraints of the MPEC are relaxed to form a nonlinear program with linear objective and non-convex quadratic inequality constraints, which is then solved using a general purpose nonlinear programming solver. In the second approach, the equilibrium constraints are treated as penalty terms in the objective, and the resulting non-convex quadratic program with linear constraints is solved using a successive linearization algorithm.;The flexibility of the bilevel approach to deal with multiple hyper-parameters, makes it powerful approach to problems such as parameter and feature selection (model selection). In this thesis, three problems are studied: model selection for support vector (SV) classification, model selection for SV regression and missing value-imputation for SV regression. Extensive computational results establish that both algorithmic approaches find solutions that generalize as well or better than conventional approaches and are much more computationally efficient.
机译:机器学习中使用的许多统计学习方法中的关键步骤涉及解决一个凸优化问题,该凸优化问题包含一个或多个用户必须选择的超参数。尽管交叉验证是选择这些参数的常用方法,但由于使用网格搜索程序在参数空间中实现交叉验证,有效地限制了模型中期望的超参数数量,这是由于交叉验证了网格中的点。高尺寸。提出了一种基于双层优化方法的新颖范式,并提出了一个统一的框架,可以在其中解决诸如模型选择等问题。机器学习问题被表述为一个双层程序-具有约束条件的数学程序另一个数学程序的最优解的函数称为内部程序。将双级程序转换为具有平衡约束(MPEC)的等效数学程序。开发了两种可供选择的双级优化算法来优化MPEC并提供对超参数的系统搜索。在第一种方法中,放松MPEC的平衡约束以形成具有线性目标和非凸二次不等式的非线性程序约束,然后使用通用非线性规划求解器求解。在第二种方法中,将平衡约束作为目标中的惩罚项,并使用连续线性化算法求解具有线性约束的非凸二次规划。;双层方法处理多个超参数的灵活性,使其成为解决诸如参数和特征选择(模型选择)之类问题的有效方法。本文研究了三个问题:支持向量(SV)分类的模型选择,SV回归的模型选择和SV回归的缺失值输入。大量的计算结果表明,两种算法方法都可以找到比常规方法更好或更通用的解决方案,并且计算效率更高。

著录项

  • 作者

    Kunapuli, Gautam.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Mathematics.;Operations Research.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;人工智能理论;运筹学;
  • 关键词

  • 入库时间 2022-08-17 11:39:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号