首页> 外文学位 >Local and global deformation from synchrotron imaging of closed cell foams in compression.
【24h】

Local and global deformation from synchrotron imaging of closed cell foams in compression.

机译:压缩过程中闭孔泡沫的同步加速器成像引起的局部和全局变形。

获取原文
获取原文并翻译 | 示例

摘要

Foams are cellular structures, which are made from an increasingly wide variety of materials. Current foam processing methods randomly places cells, making a complex microstructure. These microstructures provide foams with the mechanical properties needed for excellent impact energy absorption as evidenced by their response under compressive stress. There are three primary regions of the stress-strain curve during compression: linear elastic, plateau, and densification. The combination of these three regions makes foams mechanically suitable for energy absorption.; Recently, new metal foams made of Pd43Ni10Cu27P20 bulk metallic glass (BMG) have been successfully produced. Their mechanical properties were explored and an X-ray analysis procedure was developed. This procedure was also tested on a polymer (polymethacrylimide) foam with similar relative density to the metal foam. The polymer foam was tested in compression comparing two commercially available materials testers and a custom built Diffraction-Tomography Materials Tester (D-TMT) recently designed at OSU. Radiographs and tomographs were taken of the polymer sample while it was compressed using the D-TMT at the Advanced Photon Source. Control and sensing software was written in LabVIEW to automate tension, compression, and fatigue tests on the D-TMT. Similarly synchrotron radiation was used to monitor the microstructure of the BMG foam in compression. Dynamic compression was also performed for the first time on BMG foam using a Split Hopkinson Pressure Bar (SHPB). Image processing was used on the tomographs from both the polymer and BMG foams for qualitative comparison to computational results. Using advanced X-ray analysis, the mechanical properties of foams are understood through a connection with global stress and strain to local microstructure deformation.
机译:泡沫是多孔结构,其由越来越多的材料制成。当前的泡沫加工方法随机地放置孔,从而形成复杂的微观结构。这些微结构为泡沫提供了出色的冲击能量吸收所需的机械性能,这是由其在压缩应力下的响应所证明的。压缩过程中应力-应变曲线的三个主要区域:线性弹性,平稳和致密化。这三个区域的组合使泡沫在机械上适合于吸收能量。最近,已经成功生产了由Pd43Ni10Cu27P20大块金属玻璃(BMG)制成的新型金属泡沫。探索了它们的机械性能,并开发了X射线分析程序。还对相对密度与金属泡沫相似的聚合物(聚甲基丙烯酰亚胺)泡沫进行了测试。对比了两个商业上可买到的材料测试仪和OSU最近设计的定制的衍射层析材料测试仪(D-TMT),对聚合物泡沫进行了压缩测试。在高级光子源处使用D-TMT压缩聚合物样品时,对其进行了射线照相和断层扫描。控制和传感软件是使用LabVIEW编写的,可以在D-TMT上自动进行拉伸,压缩和疲劳测试。类似地,同步加速器辐射用于监测压缩中的BMG泡沫的微观结构。还首次使用Split Hopkinson压力杆(SHPB)对BMG泡沫进行了动态压缩。在断层扫描仪上对聚合物和BMG泡沫进行了图像处理,以与计算结果进行定性比较。使用先进的X射线分析,可以通过将整体应力和应变与局部微结构变形联系起来来了解泡沫的机械性能。

著录项

  • 作者

    Phelps, Nicholas Brandon.;

  • 作者单位

    Oklahoma State University.$bMechanical Engineering.;

  • 授予单位 Oklahoma State University.$bMechanical Engineering.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2008
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号