首页> 外文学位 >Atomistic simulation of stress evolution during thin film growth.
【24h】

Atomistic simulation of stress evolution during thin film growth.

机译:薄膜生长过程中应力演化的原子模拟。

获取原文
获取原文并翻译 | 示例

摘要

The ability to understand and control stress development in thin films during growth is one of the most important keys in developing future generations of reliable electronic and opto-electronic devices. In this dissertation, I employed atomistic simulation and theoretical modeling techniques to investigate film stress evolution during the growth of single crystal and polycrystalline films. Since these stresses are often related to surface stress, I examined the effects of surface defects on the surface stress of Cu (001) and (111) surfaces. These simulations show that these surface defects have only a mild effect on surface stresses and thus cannot be responsible for the large compressive film stresses observed in the initial and late stages of polycrystalline film growth. A recently discovered surface defect, surface dislocations, is more stable than adatoms on Au (001). Surface dislocations make the surface stress of Au (001) more tensile and hence cannot explain the experimentally observed compressive stress during polycrystalline film growth. Interestingly, minimum energy path calculations shows that surface dislocation migration provides an efficient surface mass transport mechanism. The surface/interface effects at the early stages of polycrystalline and heteroepitaxial film growth were also studied using a hybrid molecular dynamics simulation. In the early stages of polycrystalline film growth, the film stress-thickness product is proportional to the substrate surface coverage with slope equal to minus the surface stress of the substrate. For early stage heteroepitaxial film growth, compressive film stress were observed even when the lattice misfit was tensile. These surprising results suggest that at early stages of film growth, the commonly employed wafer curvature method for measuring film stress is not reliable. Stress evolution during polycrystalline film growth was also studied using molecular dynamics. These simulations, combined with theoretical modeling, demonstrate that adatoms, incorporated at grain boundaries near the surface, is the major source of the compressive film stress observed during the growth of continuous polycrystalline films.
机译:理解和控制薄膜在生长过程中应力发展的能力是开发下一代可靠电子和光电设备的最重要的关键之一。本文采用原子模拟和理论建模技术研究了单晶和多晶薄膜生长过程中的薄膜应力演化。由于这些应力通常与表面应力有关,因此我研究了表面缺陷对Cu(001)和(111)表面的表面应力的影响。这些模拟表明,这些表面缺陷仅对表面应力有轻微的影响,因此不能对在多晶膜生长的初期和后期观察到的较大的压缩膜应力负责。最近发现的表面缺陷表面位错比Au(001)上的吸附原子更稳定。表面位错使Au(001)的表面应力更具张力,因此无法解释多晶膜生长过程中实验观察到的压缩应力。有趣的是,最小能量路径计算表明表面位错迁移提供了有效的表面质量传输机制。还使用混合分子动力学模拟研究了多晶和异质外延膜生长早期的表面/界面效应。在多晶膜生长的早期,膜应力-厚度乘积与衬底表面覆盖率成正比,其斜率等于负衬底的表面应力。对于早期的异质外延膜生长,即使晶格失配是拉伸的,也观察到压缩膜应力。这些令人惊讶的结果表明,在膜生长的早期阶段,用于测量膜应力的常用晶片曲率方法并不可靠。还使用分子动力学研究了多晶膜生长过程中的应力演化。这些模拟与理论模型相结合,证明在连续多晶膜生长过程中观察到的压缩膜应力的主要来源是掺入表面附近晶界的原子。

著录项

  • 作者

    Pao, Chun-Wei.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Mechanical.; Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号