首页> 外文期刊>Thin Solid Films >Molecular dynamics simulations of internal stress evolution in ultrathin amorphous carbon films subjected to thermal annealing
【24h】

Molecular dynamics simulations of internal stress evolution in ultrathin amorphous carbon films subjected to thermal annealing

机译:超薄无定形碳膜内应力演化的分子动力学模拟热退火

获取原文
获取原文并翻译 | 示例
       

摘要

The evolution of internal stress in ultrathin amorphous carbon (a-C) films is a complex physical process that is difficult to experimentally analyze due to the very small film thickness (a few nanometers) and the lack of instruments that can perform spatiotemporal stress measurements at sub-nanometer resolutions. Even more challenging is the elucidation of the correlation between internal stress, film activated, and temperature. Molecular dynamics (MD) provides potent computational capability for tracking structural changes activated by stress and temperature at the atomic level. Consequently, the aim of this study was to perform a comprehensive MD analysis that elucidates the origin of internal stress in sub-2-nm-thick a-C films grown on single-crystal silicon under optimal deposition energy conditions and explore its dependence on prevalent structural features (e.g., hybridization state) and temperature. The physical mechanisms of a-C film growth and stress built-up under deposition conditions of energetic particle bombardment and stress relief due to thermal annealing are interpreted in the context of MD results. Simulations of film growth illuminate the correlation between film stress and energy of incident carbon atoms. A significant stress relief occurs mainly in the bulk layer of the multilayered a-C film structure at a critical annealing temperature, which continues to intensify with the further increase of temperature. Simulations of time-dependent variation of stress through the film thickness reveal that the stress relief is a very fast process that accelerates with the increase of temperature. The results of this study provide insight into the spatial and temporal variation of internal stress in ultrathin a-C films due to structure and temperature effects and the film stress-structure interdependence.
机译:超薄无定形碳(AC)膜中内应力的进化是一种复杂的物理过程,难以通过非常小的薄膜厚度(几纳米)和缺乏可以在子子地执行时空应力测量的仪器进行实验分析。纳米分辨率。更具挑战性是阐明内应力,薄膜活化和温度之间的相关性。分子动力学(MD)提供有效的计算能力,用于跟踪由原子水平的应力和温度激活的结构变化。因此,本研究的目的是进行全面的MD分析,阐明在最佳沉积能量条件下在单晶硅上生长的亚2-nm厚的交流膜中的内应力起源,并探讨其对普遍的结构特征的依赖性(例如,杂交状态)和温度。在MD结果的背景下解释了在高能量粒子轰击和热退火引起的应力释放的沉积条件下的A-C膜生长和应力的物理机制。薄膜生长的仿真照亮了入射碳原子的薄膜应力与能量之间的相关性。显着的应力浮雕主要发生在临界退火温度下多层A-C膜结构的堆积层中,这继续加剧温度的进一步增加。通过膜厚度模拟应力的时间依赖性变化表明,应力浮雕是一种非常快速的过程,其随着温度的增加而加速。该研究的结果提供了对超薄A-C薄膜的内应力的空间和时间变化的洞察,由于结构和温度效应以及薄膜应力结构相互依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号