首页> 外文学位 >Advanced finite element modeling and stability analysis of the Superplastic Forming process.
【24h】

Advanced finite element modeling and stability analysis of the Superplastic Forming process.

机译:超塑性成形过程的高级有限元建模和稳定性分析。

获取原文
获取原文并翻译 | 示例

摘要

Metal forming industries are constantly looking for ways to increase their productivity and competitiveness by advancing innovative, economical, energy-efficient, and environmentally friendly metal forming techniques. Superplastic Forming (SPF) has a great potential to he one of these exciting advanced forming techniques. SPF is a near net shape forming process used with superplastic materials, a unique class of metals that has the ability to undergo extraordinary large tensile ductility. SPF offers many advantages over conventional forming operations including weight reduction, greater design flexibility, and the ability to shape hard metals and form complex shapes. However, low production rate, non-uniformity of the formed part and limited predictive capabilities of deformation due to lack of accurate constitutive and failure models are among the main obstacles hindering the widespread use of SPF.; Although the available analytical and numerical studies on SPF employ different optimization schemes, however, they do not account for a number of important features, leading to the current limited predictive capabilities. These features include anisotropy, microstructural evolution, multiaxiality and multiscale failure mechanisms. These issues need be addressed in a comprehensive approach which integrates the mechanics, materials and manufacturing aspects of superplastic forming process.; This research aims to advance the state of the art of SPF by proposing new and creative techniques that help in optimizing the process and overcoming its disadvantages. To study the effectiveness of the new proposed techniques in a cost-effective manner, the Finite Element method (FE) is used. User defined subroutines are compiled to customize the code and implement the material behavior through microstructure-based constitutive laws that are based on large viscoplastic deformation into a FE code. A nonlinear multiscale failure criterion that accounts for geometrical necking and microstructural aspects is utilized to devise variable strain rate forming paths that are able to reduce the forming time without sacrificing the integrity of the formed part. In addition, the effects of back pressure and initial grain size gradient in the formed sheet on the SPF process are studied in this work.; Keywords: Superplastic Forming, Finite Element Modeling, Stability Analysis, Back Pressure, Grain size.
机译:金属成型行业一直在寻求通过发展创新,经济,节能和环保的金属成型技术来提高生产率和竞争力的方法。超塑性成形(SPF)对于这些令人兴奋的先进成形技术之一具有巨大的潜力。 SPF是一种与超塑性材料一起使用的近净成形工艺,超塑性材料是一类独特的金属,具有超常的大拉伸延展性。与传统的成型操作相比,SPF具有许多优点,包括重量减轻,更大的设计灵活性以及使硬质金属成型和形成复杂形状的能力。但是,由于缺乏精确的本构模型和破坏模型,低生产率,成形零件的不均匀性以及变形的预测能力有限,这是阻碍SPF广泛使用的主要障碍。尽管有关SPF的可用分析和数值研究采用了不同的优化方案,但是它们并未说明许多重要特征,从而导致当前有限的预测能力。这些特征包括各向异性,微结构演化,多轴性和多尺度破坏机制。这些问题需要以综合的方法来解决,该方法综合了超塑性成形工艺的力学,材料和制造方面。这项研究旨在通过提出有助于优化流程并克服其缺点的新的创新技术来提高SPF的技术水平。为了以经济有效的方式研究新提出的技术的有效性,使用了有限元方法(FE)。编译用户定义的子例程以自定义代码,并通过基于微结构的本构定律来实现材料行为,该定律基于将大的粘塑性变形转变为FE代码。考虑到几何颈缩和微观结构方面的非线性多尺度破坏准则被用于设计可变应变率形成路径,该路径能够减少形成时间而不牺牲形成零件的完整性。此外,在这项工作中研究了背压和成形板材中初始晶粒尺寸梯度对SPF工艺的影响。关键字:超塑性成形,有限元建模,稳定性分析,背压,晶粒度。

著录项

  • 作者

    Nazzal, Mohammad Ahmad.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号