首页> 外文学位 >Collocation based meshless methods for microelectromechanical systems.
【24h】

Collocation based meshless methods for microelectromechanical systems.

机译:基于搭配的微机电系统无网格方法。

获取原文
获取原文并翻译 | 示例

摘要

Multiphysics and multiscale analysis, which is essential for microelectromechanical systems (MEMS), is radically simplified by meshless techniques, which are appealing in adaptive techniques. In this work, the mathematical expressions for the meshless approximation and global error bound for the finite cloud method (FCM) have been derived. The point distribution in a cloud significantly affects the condition number of the final matrix which is directly related to the global error of the solution. Based on the analysis, certain positivity conditions were proposed as a criteria to monitor the cloud quality and special weighting functions to satisfy the positivity conditions. In order to minimize solution errors, modifications to the fixed kernel approximation were proposed, and more sophisticated collocation schemes were studied.; After the theoretical study of the meshless methods, the FCM and boundary cloud method (BCM) were applied to solve the fluid flow in the MEMS devices. Combining the fluid flow module with the solver for the Poisson and Nernst-Planck (PNP) equations, a tool for the simulation of ion transport in the framework of the meshless methods has been developed. Furthermore, this tool has been used to study the electrokinetic transport in a hybrid micro-nanofluidic interconnect device, which is capable of controlling analyte transfer between the microchannels through a nanochannel under rest, injection and recovery stages of operation by varying the applied potential bias. During the injection stage, the phenomenon of ion accumulation and depletion is observed at the micro-nano interface region. Net volume charge in the depletion region gives rise to nonlinear electrokinetic transport during the recovery stage due to induced pressure, induced electroosmotic flow of the second kind and complex flow circulations. Analytical expressions derived for ion current variation are in agreement with the simulated results. In the presence of multiple accumulation or depletion regions, a hybrid micro-nano device can be designed to function as a logic gate.
机译:微机电系统(MEMS)必不可少的多物理场和多尺度分析通过无网格技术从根本上得以简化,无网格技术在自适应技术中颇具吸引力。在这项工作中,推导了有限云方法(FCM)的无网格近似和全局误差界的数学表达式。云中的点分布会显着影响最终矩阵的条件数,该条件数与解决方案的整体误差直接相关。在分析的基础上,提出了一定的积极性条件作为监测云质量的指标,并提出了满足其积极性的特殊加权函数。为了使求解误差最小,提出了对固定核近似的修改,并研究了更复杂的配置方案。在对无网格方法进行理论研究之后,应用了FCM和边界云方法(BCM)来解决MEMS器件中的流体流动问题。将流体模块和Poisson和Nernst-Planck(PNP)方程的求解器相结合,开发了一种在无网格方法框架内模拟离子传输的工具。此外,该工具已用于研究混合微纳米流体互连装置中的电动传输,该装置能够通过改变施加的电势偏压来控制分析物在微通道之间通过纳米通道在静止,注入和恢复操作阶段之间的分析物转移。在注入阶段,在微纳米界面区域观察到离子累积和耗尽现象。由于感应压力,第二种感应电渗流和复杂的流动循环,耗尽区中的净净电荷会在恢复阶段引起非线性的电动迁移。离子电流变化的解析表达式与模拟结果一致。在存在多个累积或耗尽区的情况下,可以将混合微纳器件设计为逻辑门。

著录项

  • 作者

    Jin, Xiaozhong.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Chemistry Analytical.; Engineering Electronics and Electrical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;无线电电子学、电信技术;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号