首页> 外文学位 >Novel Asymmetric Tunnel Source Transistors for Energy Efficient Circuits and Mixed Signal Applications.
【24h】

Novel Asymmetric Tunnel Source Transistors for Energy Efficient Circuits and Mixed Signal Applications.

机译:新型非对称隧道源晶体管,用于节能电路和混合信号应用。

获取原文
获取原文并翻译 | 示例

摘要

Over the history of integrated circuits, a gargantuan increase in speed and performance has been achieved due to the trend of scaling. In recent years, however, many daunting challenges arise as we scale into sub-32nm regime. The building block of the MOSFET device, Silicon, is being pushed to its performance limitation. New materials and design methodologies are being investigated to extract better performance. In this study, we concentrate on two flavors of Novel Source Tunneling Transistors: the Schottky Tunnel Source FET and the Source Pocket band-to-band tunneling FET.;Schottky barrier FETs have recently attracted attention as a viable alternative to conventional CMOS transistors for sub-32nm technology nodes. In this study, an asymmetric Schottky Tunnel Source SOI FET (STS-FET) has been proposed. The STS-FET has the source/drain regions replaced with metal/silicide as opposed to highly doped silicon in conventional devices. The main feature of this device is the injection of carriers through gate controlled Schottky barrier tunneling at the source. The optimized device structure shows improved performance as compared to conventional Schottky FETs. The analog performance of the STS-FET was studied and the device was found to be a superior alternative to conventional CMOS transistors. Various process modules were designed and developed. The STS-FET was then fabricated with NiSi technology and successfully demonstrated for 0.11mum gate lengths. The high immunity to short channel effects and the excellent analog performance of the device makes it an attractive candidate for continued scaling into sub 32nm node as well as mixed signal applications.;Energy Efficiency is also an important concern for sub-32nm CMOS integrated circuits. Scaling of devices to below 32nm leads to an increase in active power dissipation (CVDD2.f) and off-state power (IOFF·VDD). Hence, new device innovations are being explored to address these problems. In this study, a novel source-pocket tunnel field effect transistor (SP-TFET), based on the principle of band to band tunneling is proposed. TFETs have the potential to overcome the 60mV/dec limit set on the subthreshold swing of conventional CMOS transistors thus making them very attractive for continued power supply scaling. p-i-n TFETs and source-pocket TFETs were studied, optimized and successfully demonstrated on both bulk and SOI substrates. The source-pocket TFET shows better performance when compared to a p-i-n TFET. The source pocket TFET was also compared to various other TFETs in literature. The comparison suggests that if multiple strategies are used to improve the device performance, the source pocket TFET along with other TFETs can be very attractive alternatives to conventional MOSFET devices especially for low power applications.
机译:在集成电路的历史上,由于规模化趋势,已经实现了速度和性能的巨大提高。然而,近年来,随着我们扩展到32nm以下制程,出现了许多艰巨的挑战。 MOSFET器件的组成部分,硅,正被推向其性能极限。正在研究新材料和设计方法,以提取更好的性能。在这项研究中,我们集中于两种新型的源极隧穿晶体管:肖特基隧道源极FET和源口袋带到带隧道隧穿FET;肖特基势垒FET作为可替代传统CMOS晶体管的可行替代品最近引起了关注。 -32nm技术节点。在这项研究中,提出了一种不对称的肖特基隧道源SOI FET(STS-FET)。与传统器件中的高掺杂硅相反,STS-FET的源/漏区被金属/硅化物代替。该器件的主要特征是通过源极处受控的肖特基势垒隧穿注入载流子。与传统的肖特基FET相比,优化的器件结构显示出更高的性能。研究了STS-FET的模拟性能,发现该器件是传统CMOS晶体管的优良替代品。设计和开发了各种处理模块。然后,采用NiSi技术制造STS-FET,并成功证明了其栅极长度为0.11μm。该器件对短通道效应的高度抗扰性以及出色的模拟性能使其成为继续扩展至32nm以下节点以及混合信号应用的诱人候选者。能源效率也是32nm以下CMOS集成电路的重要考虑因素。将器件缩放至32nm以下会导致有源功耗(CVDD2.f)和断态功耗(IOFF·VDD)增大。因此,正在探索新的设备创新来解决这些问题。在这项研究中,提出了一种新颖的基于口袋到隧道的原理的源-口袋隧道场效应晶体管(SP-TFET)。 TFET具有克服传统CMOS晶体管亚阈值摆幅设置的60mV / dec极限的潜力,因此使其对于持续的电源缩放非常有吸引力。对p-i-n TFET和源极口袋型TFET进行了研究,优化,并成功地在体衬底和SOI衬底上进行了演示。与p-i-n TFET相比,源口袋TFET表现出更好的性能。在文献中也将源袋型TFET与其他各种TFET进行了比较。比较表明,如果采用多种策略来改善器件性能,则源极口袋型TFET以及其他TFET可能是常规MOSFET器件的非常有吸引力的替代品,尤其是在低功耗应用中。

著录项

  • 作者

    Jhaveri, Ritesh Atul.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.;Physics Solid State.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号