首页> 外文学位 >Flexible mixed-effect modeling of functional data, with applications to process monitoring.
【24h】

Flexible mixed-effect modeling of functional data, with applications to process monitoring.

机译:功能数据的灵活的混合效果建模,以及在过程监控中的应用。

获取原文
获取原文并翻译 | 示例

摘要

High levels of automation in manufacturing industries are leading to data sets of increasing size and dimension. The challenge facing statisticians and field professionals is to develop methodology to help meet this demand.;The focus of this thesis is the analysis of functional process data such as the valve seat insertion example. A number of techniques are set forth. In the first part, two ways to model a single curve are considered: a b-spline fit via linear regression, and a nonlinear model based on differential equations. Each of these approaches is incorporated into a mixed effects model for multiple curves, and multivariate process monitoring techniques are applied to the predicted random effects in order to identify anomalous curves. In the second part, a Bayesian hierarchical model is used to cluster low-dimensional summaries of the curves into meaningful groups. The belief is that the clusters correspond to distinct types of processes (e.g. various types of "good" or "faulty" assembly). New observations can be assigned to one of these by calculating the probabilities of belonging to each cluster. Mahalanobis distances are used to identify new observations not belonging to any of the existing clusters. Synthetic and real data are used to validate the results.;Functional data is one example of high-dimensional data characterized by observations recorded as a function of some continuous measure, such as time. An application considered in this thesis comes from the automotive industry. It involves a production process in which valve seats are force-fitted by a ram into cylinder heads of automobile engines. For each insertion, the force exerted by the ram is automatically recorded every fraction of a second for about two and a half seconds, generating a force profile. We can think of these profiles as individual functions of time summarized into collections of curves.
机译:制造业中的高度自动化导致数据集的规模和维度不断增加。统计人员和现场专业人员面临的挑战是开发方法来帮助满足这一需求。本论文的重点是对功能过程数据(例如阀座插入示例)的分析。阐述了多种技术。在第一部分中,考虑了两种对单个曲线建模的方法:通过线性回归的b样条拟合和基于微分方程的非线性模型。这些方法中的每一种都被合并到用于多条曲线的混合效应模型中,并且将多元过程监视技术应用于预测的随机效应,以便识别异常曲线。在第二部分中,使用贝叶斯层次模型将曲线的低维摘要汇总为有意义的组。认为集群对应于不同类型的过程(例如,各种类型的“良好”或“故障”组装)。通过计算属于每个聚类的概率,可以将新观察值分配给其中一个。马氏距离用于识别不属于任何现有星团的新观测值。综合数据和真实数据用于验证结果。功能数据是高维数据的一个示例,该高维数据的特征是观察到的数据是某些连续测量(例如时间)的函数。本文考虑的应用来自汽车行业。它涉及一个生产过程,在该过程中,阀杆由一个推杆压入到汽车发动机的气缸盖中。每次插入时,撞锤所施加的力会在不到一秒的时间内自动记录下来,持续约两分半秒,从而产生力分布。我们可以将这些轮廓视为总结为曲线集合的单个时间函数。

著录项

  • 作者

    Mosesova, Sofia A.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Statistics.;Engineering Automotive.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号