首页> 外文学位 >Mechanistic studies of the human recombination proteins RAD51 and RAD54 at the molecular level via fluorescence resonance energy transfer (FRET).
【24h】

Mechanistic studies of the human recombination proteins RAD51 and RAD54 at the molecular level via fluorescence resonance energy transfer (FRET).

机译:通过荧光共振能量转移(FRET)在分子水平上对人重组蛋白RAD51和RAD54进行机理研究。

获取原文
获取原文并翻译 | 示例

摘要

Homologous recombination (HR) is a key double stranded DNA break repair process responsible for maintaining genetic stability and creation of diversity. During Meiosis I, HR mediates rearrangement in sister chromosomes, allowing for the creation of genetic variability in most organisms. Also, during Mitosis, HR plays a very important role in maintaining genomic stability and avoiding lethal mutations through accurate repair of certain DNA damages. The human Rad54 (hRad54) and human Rad51 (hRad51) proteins are key proteins required for proper HR. hRad51 forms a right-handed single stranded DNA (ssDNA) filament and promotes homologous pairing and strand exchange in an ATP dependent manner. hRad54 belongs to the Swi2/Snf2 family of DNA dependent ATPases and amongst other activities, it has chromatin remodeling activity and it has been found to promote Holliday junction branch migration. hRad51 and hRad54 are known to directly interact and enhance each other's known activities.;This dissertation focuses on studying the strand exchange and branch migration steps of the HR mediated DNA repair pathway. We have developed Fluorescence Resonance Energy Transfer (FRET)-DNA assays in order to sensitively monitor strand exchange and branch migration reactions in real time. In one set of experiments we have focused on attempting to establish the specific roles hRad51 and hRad54 play during the HR mediated double strand break repair (DSBR) pathway at the naked DNA level. Generally, DNA in the cell is wrapped around core histones resulting in a structure called the nucleosome. Here we also created a DNA-FRET system that allows real time strand exchange studies to be performed at the nucleosome level.;Our results indicate that hRad54 greatly stimulates the overall efficiency of hRad51 mediated strand exchange probably by stabilizing the hRad51-ssDNA filament, the active form of Rad51. We also find that hRad54 can promote branch migration of a Holliday Junction (HJ) through various degrees of mismatches more efficiently than the same reactions promoted by hRad51. The results imply that the main role of hRad51 in HR is in the homology recognition and initial strand exchange reaction to form a three-stranded Holliday junction. After the formation of a three-stranded Holliday junction which subsequently becomes a four-stranded Holliday junction, hRad54, which promotes more efficient branch migration, could take over to promote long range strand exchange. Our results from our FRET-nucleosome system show that hRad51 and hRad54 mediate strand exchange efficiently when the donor double stranded DNA (dsDNA) substrate is present as naked DNA. The presence of the same donor dsDNA molecule as a core nucleosome prevents hRad51 and hRad54 mediated strand exchange. Our data provides evidence that hRad51 and hRad54 are not sufficient to mediate strand exchange when the donor molecule is present as a core nucleosome suggesting the possible involvement of other factors during strand exchange in vivo.;Lastly, in this dissertation we have taken advantage of the powerful atomic force microscopy (AFM) technique to visualize interactions involving the HR proteins RPA, and Brh2 and a specially designed DNA substrate. Previous results have indicated, through a set of experiments using radioactively labeled DNA and gel electrophoresis, the binding of RPA and Brh2 to specific regions on a partially double stranded and partially single stranded circular DNA substrate (Gapped DNA). This substrate represents a key intermediate formed during HR mediated DNA repair. Here we show supporting evidence by visually demonstrating the specific binding of RPA to the single strand DNA region on the Gapped DNA substrate and the specific binding of Brh2 to the single strand-double strand junction site on the Gapped DNA substrate by means of AFM.
机译:同源重组(HR)是关键的双链DNA断裂修复过程,负责维持遗传稳定性和多样性。在减数分裂I期间,HR介导姐妹染色体的重排,从而使大多数生物体产生了遗传变异。同样,在有丝分裂期间,HR在维持基因组稳定性和通过精确修复某些DNA损伤来避免致死突变方面也起着非常重要的作用。人类Rad54(hRad54)和人类Rad51(hRad51)蛋白是适当的HR所需的关键蛋白。 hRad51形成右手单链DNA(ssDNA)细丝,并以ATP依赖性方式促进同源配对和链交换。 hRad54属于DNA依赖性ATPase的Swi2 / Snf2家族,除其他活性外,它还具有染色质重塑活性,并已发现其可促进霍利迪结分支迁移。 hRad51和hRad54可以直接相互作用并增强彼此的已知活性。;本论文着重研究HR介导的DNA修复途径的链交换和分支迁移步骤。我们已经开发了荧光共振能量转移(FRET)-DNA测定法,以便实时灵敏地监测链交换和分支迁移反应。在一组实验中,我们集中于尝试建立hRad51和hRad54在HR介导的裸DNA水平双链断裂修复(DSBR)途径中的特定作用。通常,细胞中的DNA包裹在核心组蛋白周围,形成称为核小体的结构。在这里,我们还创建了一个DNA-FRET系统,该系统可以在核小体水平上进行实时链交换研究。;我们的结果表明,hRad54可能通过稳定hRad51-ssDNA细丝,活动形式的Rad51。我们还发现,与由hRad51促进的相同反应相比,hRad54可以通过各种程度的错配促进霍利迪结(HJ)的分支迁移。结果表明,hRad51在HR中的主要作用是在同源性识别和初始链交换反应中形成三链霍利迪连接。在形成三链霍利迪连接处并随后变为四链霍利迪连接处之后,促进更有效的分支迁移的hRad54可以接管促进长链交换。我们从FRET-核小体系统获得的结果表明,当供体双链DNA(dsDNA)底物以裸露DNA形式存在时,hRad51和hRad54可以有效地介导链交换。作为核心核小体的相同供体dsDNA分子的存在阻止了hRad51和hRad54介导的链交换。我们的数据提供了证据,表明当供体分子以核心核小体的形式存在时,hRad51和hRad54不足以介导链交换,这提示在体内链交换过程中可能还涉及其他因素。最后,本文我们利用了强大的原子力显微镜(AFM)技术来可视化涉及HR蛋白RPA和Brh2以及专门设计的DNA底物的相互作用。通过使用放射性标记的DNA和凝胶电泳进行的一组实验,以前的结果表明RPA和Brh2与部分双链和部分单链环状DNA底物(缺口DNA)上的特定区域结合。此底物代表在HR介导的DNA修复过程中形成的关键中间体。在这里,我们通过视觉证明RPA与Gapped DNA底物上的单链DNA区域的特异性结合和Brh2与AFM的Gapped DNA底物上的单链-双链连接位点的特异性结合,显示了支持的证据。

著录项

  • 作者

    Urena, Damian E.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号