首页> 外文学位 >Experimental and theoretical investigations of heat elevation and specific absorption rate during magnetic nanoparticle hyperthermia.
【24h】

Experimental and theoretical investigations of heat elevation and specific absorption rate during magnetic nanoparticle hyperthermia.

机译:磁性纳米粒子热疗过程中热量升高和比吸收率的实验和理论研究。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic nanoparticle hyperthermia has attracted growing research interests in malignant tumors treatment due to its simple implementation and few complications. In this approach, magnetic nanoparticles delivered to the tissue induce localized heating when exposed to an alternating magnetic field, leading to irreversible thermal damage to the tumor. Controlling the temperature elevations in such treatment is still an immense challenge in clinical applications. In the first part of this dissertation, we evaluate magnetic nanofluid transport in agarose gel. By adjusting the gel concentration and injection rate, we identify an optimal delivery strategy for achieving a spherically shaped nanoparticle dispersion that allows for a controlled heat distribution. It was shown that the shape and volume of the nanofluid distribution are highly dependent on the injection rate and gel porosity. The measured specific absorption rate (SAR) shows that the nanoparticle distribution is not uniform with a higher concentration close to the injection site.;In the second part of this dissertation, we evaluate the effects of the blood perfusion rate and the nanofluid amount on the heating pattern and temperature elevations in rat muscle tissue during in vivo experiments. Doubling the amount of nanofluid resulted in about 70% increase of the temperature elevation around the injection site and a temperature of 43oC was feasible under the protocol and magnetic field parameters used in the experiment. Using the measured temperature distribution, an inverse heat transfer analysis was performed to evaluate the induced SAR. It showed that the nanoparticles are more concentrated in the vicinity of the injection site when their amount is bigger.;Finally, an optimization algorithm is developed to determine the optimum heating patterns induced by multiple nanoparticle injections in a tumor. The design objective is to elevate the temperatures of at least 90% of the tumor above 43°C, and to ensure that only less than 10% of the normal tissue is heated to temperatures over 43°C. The efficiency and capability of this approach have been demonstrated in two tumors with simple or complicated geometry. The results of this study ought to be coupled with an experimental database to relate the optimized SAR parameters to their appropriate nanoparticle concentration, injection amount, and injection rate. We believe that the developed optimization algorithm can be used as a guideline for physicians to design an optimal treatment plan in magnetic nanoparticle hyperthermia.
机译:磁性纳米热疗由于其实施简单且并发症少而在恶性肿瘤治疗中引起了越来越多的研究兴趣。在这种方法中,递送到组织的磁性纳米颗粒在暴露于交变磁场时会引起局部加热,从而导致对肿瘤的不可逆的热损伤。在这种治疗中控制温度升高仍然是临床应用中的巨大挑战。在本文的第一部分,我们评估了琼脂糖凝胶中磁性纳米流体的运输。通过调整凝胶浓度和注入速率,我们确定了实现球形纳米颗粒分散体(允许热分布受控)的最佳输送策略。结果表明,纳米流体分布的形状和体积高度依赖于注入速率和凝胶孔隙率。所测量的比吸收率(SAR)表明,在靠近注射部位的较高浓度下,纳米颗粒分布不均匀。;在本论文的第二部分,我们评估了血液灌注速率和纳米流体量对纳米颗粒的影响。体内实验中大鼠肌肉组织的发热模式和温度升高。将纳米流体的量加倍导致注射部位周围的温度升高约70%,并且在实验中使用的实验方案和磁场参数下43oC的温度是可行的。使用测得的温度分布,进行反向传热分析以评估诱导的SAR。结果表明,当纳米粒子的数量较大时,纳米粒子更集中在注射部位附近。最后,开发了一种优化算法,以确定在肿瘤中多次纳米粒子注射诱导的最佳加热方式。设计目标是将至少90%的肿瘤的温度升高到43°C以上,并确保只有不到10%的正常组织被加热到43°C以上的温度。这种方法的效率和能力已在两种具有简单或复杂几何形状的肿瘤中得到证实。这项研究的结果应与一个实验数据库相结合,以将优化的SAR参数与其合适的纳米颗粒浓度,进样量和进样速率联系起来。我们认为,开发的优化算法可以作为医师设计磁性纳米粒子热疗的最佳治疗方案的指南。

著录项

  • 作者

    Salloum, Maher.;

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.;Health Sciences Oncology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;肿瘤学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号