首页> 外文学位 >Studies in stochastic processes: Adaptive wavelet decompositions and operator fractional Brownian motions.
【24h】

Studies in stochastic processes: Adaptive wavelet decompositions and operator fractional Brownian motions.

机译:随机过程的研究:自适应小波分解和算子分数布朗运动。

获取原文
获取原文并翻译 | 示例

摘要

The thesis is centered around the themes of wavelet methods for stochastic processes, and of operator self-similarity. It comprises three parts. The first two parts concern particular wavelet-based decompositions of stationary processes, in either continuous or discrete time. The decompositions are essentially characterized by uncorrelated detail coefficients and possibly correlated approximation coefficients. This is of interest, for example, in simulation and maximum likelihood estimation. In discrete time, the focus is somewhat on long memory time series. The last part of the thesis concerns operator fractional Brownian motions. These are Gaussian operator self-similar processes with stationary increments, and are multivariate analogues of the one-dimensional fractional Brownian motion. We establish integral representations of operator fractional Brownian motions, study their basic properties and examine questions of uniqueness.
机译:本文围绕随机过程的小波方法和算子自相似性的主题展开。它包括三个部分。前两个部分涉及固定过程在连续或离散时间内基于小波的特定分解。分解的基本特征是不相关的细节系数和可能的相关近似系数。例如,在仿真和最大似然估计中,这是令人感兴趣的。在离散时间内,重点是较长的存储时间序列。论文的最后一部分涉及算子分数布朗运动。这些是具有固定增量的高斯算子自相似过程,并且是一维分数布朗运动的多元类似物。我们建立算子分数布朗运动的积分表示,研究其基本性质,并研究唯一性问题。

著录项

  • 作者单位

    The University of North Carolina at Chapel Hill.$bStatistics.;

  • 授予单位 The University of North Carolina at Chapel Hill.$bStatistics.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号