首页> 外文学位 >Synthetic bias estimation in small area estimation.
【24h】

Synthetic bias estimation in small area estimation.

机译:小面积估计中的综合偏差估计。

获取原文
获取原文并翻译 | 示例

摘要

Small area estimation (SAE) has been one of the most active areas in survey methodology research, due to the increasing demand for small area statistics from government agencies and the private sector. But in some areas of interest, sample sizes could be very small, or even zero, in which case, "direct" estimates based on area-specific sample data may fail to provide estimates of adequate precision. It is common in these cases to use "indirect estimators", which use data from other areas. Many model-based small-area estimation methods have been proposed, including a simple and intuitive approach, "synthetic estimation". Synthetic estimates have smaller variances than direct estimates, but are usually biased. The bias is called synthetic estimation bias (SEB for short). An important application of synthetic estimation is in census coverage study.; The existing methods for SEB estimation in census coverage study context, include: (i) the unbiased estimator of SEB2 (the square of synthetic estimation bias), (ii) Marker's (1995) estimator of SEB 2, and (iii) surrogate variable methods. Each of these methods has drawbacks. Method (i) yields negative estimates of SEB2. Method (ii) estimates the SEB2 to be the same for each area, and method (iii) strongly depends on untested model assumptions. We propose the EB estimators of SEB and SEB2, which are based Hierarchical Bayes (HB) models, with carefully selected weight functions. Simulation studies indicate consistent improvement over the existing methods in many cases. We apply the "best" estimator identified by simulation studies to better understand the magnitude of SEB in the Census Bureau's estimates of net undercount in the 2000 census.; We develop model building procedures to construct hierarchical Bayes models for SEB estimation in census coverage study context. We derive the RMSE (Root MSE) for A.C.E. Revision II for Census 2000 by incorporating the estimated SEB2. We also investigate the degree of departure from synthetic model, by comparing the estimates of SEB2 at the LCO (local census office) level and the state level. Finally we study the impact of SEB estimation in loss function analysis related to whether census or adjustment should be used.
机译:由于政府机构和私营部门对小面积统计的需求不断增长,小面积估计(SAE)一直是调查方法研究中最活跃的领域之一。但是在某些感兴趣的领域中,样本大小可能很小,甚至为零,在这种情况下,基于特定区域样本数据的“直接”估计可能无法提供足够的精度估计。在这些情况下,通常会使用“间接估算器”,这些估算器使用其他领域的数据。已经提出了许多基于模型的小面积估计方法,包括一种简单直观的方法“综合估计”。综合估计的方差小于直接估计的方差,但通常会有偏差。该偏差称为综合估计偏差(简称SEB)。综合估计的重要应用是普查覆盖率研究。在普查覆盖率研究范围内,现有的SEB估计方法包括:(i)SEB2的无偏估计量(综合估计偏差的平方),(ii)SEB 2的Marker(1995)估计量,以及(iii)替代变量方法。这些方法中的每一个都有缺点。方法(i)得出SEB2的负估计。方法(ii)估计每个区域的SEB2都相同,方法(iii)很大程度上取决于未经测试的模型假设。我们提出SEB和SEB2的EB估计量,它们是基于Hierarchical Bayes(HB)模型的,具有经过精心选择的权重函数。仿真研究表明,在许多情况下,对现有方法的改进是一致的。我们使用通过模拟研究确定的“最佳”估算器,以更好地理解2000年人口普查中人口普查局对净不足数估算的SEB数量。我们开发了模型构建程序,以在普查覆盖研究环境中构建用于SEB评估的分层贝叶斯模型。我们得出A.C.E.的RMSE(Root MSE)。通过合并估计的SEB2,进行2000年人口普查的修订版II。我们还通过比较LCO(地方人口普查局)和州一级的SEB2估算值,研究了偏离综合模型的程度。最后,我们研究了SEB估计在损失函数分析中的影响,该损失函数分析是否应使用普查或调整。

著录项

  • 作者

    Song, Haoliang.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号