首页> 外文学位 >Temporal aggregation and related problems in multivariate time series analysis.
【24h】

Temporal aggregation and related problems in multivariate time series analysis.

机译:多元时间序列分析中的时间聚集和相关问题。

获取原文
获取原文并翻译 | 示例

摘要

The time series data used are generally sums over time of data generated more frequently than the reporting interval. In this research, we focused on the effect of temporal aggregation on a vector autoregressive moving average (VARMA) model structure, a cointegration relationship, the causality, and multiplicative seasonal VARMA processes.; First, we worked on the cointegration problem and showed that while the cointegrating matrix remains unchanged, temporal aggregation changes the model form and affects the results of the cointegration trace test. We derived a modified test statistic and proved that the limiting distribution of the new statistic is the same as that of Johansen's trace test statistic. We can use Johansen's table of critical values but we have to use the modified test statistic that incorporates the effect of aggregation in computing the test statistic when aggregate data are used for the test. The use of aggregate data for causal inference is common in practice. Since the form of the vector time series model changes after aggregation, non-causality conditions for the basic model and for the model of aggregates are different. Temporal aggregation often deduces a causal relationship between aggregate variables. Because the standard test fails to detect cointegration in aggregate series, we developed a modified testing procedure to test the Granger non-causality in cointegrated systems for aggregates.; Many business and economic time series show seasonality. The best way to present seasonality is by using multiplicative models. We studied the representation problem in multiplicative seasonal VARMA models and showed that the correct order of non-seasonal and seasonal parameters in the representation improves parameter estimation and forecasts. We recommend fitting a multiplicative model by using different representations and making selection with information criteria. We also derived the model for aggregates of multiplicative processes.
机译:通常使用的时间序列数据是比报告间隔更频繁地生成的数据随时间变化的总和。在这项研究中,我们关注时间聚集对矢量自回归移动平均(VARMA)模型结构,协整关系,因果关系和乘性季节性VARMA过程的影响。首先,我们对协整问题进行了研究,结果表明,在协整矩阵保持不变的情况下,时间聚合会改变模型形式并影响协整跟踪测试的结果。我们得出了修改后的检验统计量,并证明了新统计量的极限分布与Johansen跟踪检验统计量的极限分布相同。我们可以使用Johansen的临界值表,但是当汇总数据用于测试时,我们必须使用修改后的测试统计量,该统计量将汇总的影响纳入计算测试统计量中。在实践中通常使用汇总数据进行因果推断。由于向量时间序列模型的形式在聚合后会发生变化,因此基本模型和聚合模型的非因果条件不同。时间聚集通常可以推断聚集变量之间的因果关系。因为标准测试无法检测到聚集体系列中的协整,所以我们开发了一种改进的测试程序来测试聚集体中协整系统中的Granger非因果关系。许多商业和经济时间序列显示季节性。呈现季节性的最佳方法是使用乘法模型。我们研究了乘法季节性VARMA模型中的表示问题,并表明表示中非季节性和季节性参数的正确顺序可以改善参数估计和预测。我们建议通过使用不同的表示形式并根据信息条件进行选择来拟合乘法模型。我们还推导了乘法过程集合的模型。

著录项

  • 作者

    Yozgatligil, Ceylan.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Statistics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 统计学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号