首页> 外文学位 >Defining mechanisms by which fever-range thermal stress regulates natural killer cell mediated recognition and killing of tumor cells.
【24h】

Defining mechanisms by which fever-range thermal stress regulates natural killer cell mediated recognition and killing of tumor cells.

机译:定义发烧范围热应激调节自然杀伤细胞介导的对肿瘤细胞的识别和杀伤的机制。

获取原文
获取原文并翻译 | 示例

摘要

All circulating cells, including Natural Killer (NK) cells, normally experience temperature gradients as they move through compartments in the body; however inflammation-driven febrile conditions can expose them to elevated temperatures for several hours. Previous studies in mice suggest a potential for mild (fever-range) whole body hyperthermia to enhance tumor growth control by NK cells. Moreover, recent clinical studies in cancer patients indicate a positive overall survival benefit by combining hyperthermia with radiotherapy. Whether heat-induced enhancement of NK cell activity is involved in the benefits experienced by patients in these clinical trials is not yet clear. In general, few studies to date have studied whether a specific, thermally sensitive molecule or mechanism exists in the anti-tumor immune response which could mediate tumor cell killing. In this thesis research, we hypothesize that mild fever-range thermal stress results in enhancement of NK cell activity through at least two mechanisms: (1) specific upregulation of a surface molecule (MICA) on tumor cells that renders them more sensitive to NKG2D-mediated NK cell recognition and killing, and (2) transient clustering of NKG2D receptor on NK cells which could possibly decrease the NK cell activation threshold. We found that exposure of human peripheral blood NK cells and target tumor cells to fever-range temperatures (39.5°C) significantly enhances their ability to lyse Colo205 target cells. This effect is dependent upon the function of the NKG2D receptor of NK cells and its ligand MHC class I-related chain A (MICA), and is maximal when both NK and tumor cell targets are heated. A similar effect was not observed when long-term cultured NK cell lines or IL-2-activated peripheral blood NK cells were used as effectors, indicating that thermal sensitivity of effectors is activation state-dependent. On NK cells, plasma membrane reorganization may occur after mild heat stress, and disruption of membrane structures, termed lipid rafts, results in loss of thermal stress enhanced NK cell activity. It was observed that thermal exposure does not affect the total level of NKG2D surface expression, but does result in its distinct clustering, identical to that which occurs following IL-2-induced activation and this effect is transient; it is lost on NK cells within 24 hours. On tumor target cells, previously reported stress sensitive cellular targets include heat shock proteins, MICA and MHC Class I. We found that mild temperature elevation results in transcriptional up-regulation of MICA in a manner that correlates with increased sensitivity to cytolysis; however MHC Class I levels did not change. We also examined the levels of soluble MICA molecules after mild thermal stress, since these have been linked to the suppression of NK cell mediated activation through NKG2D. Although we observed a thermal enhancement of MICA on tumor cell surface, we did not observe an increase of the soluble form of MICA with thermal stress. To identify potential underlying mechanisms for the thermally increased MICA levels on tumor cells, we investigated the role of the transcription factor hsf1 on regulating MICA under mild thermal stress. We observed that blocking hsf1 in Colo205 cells using siRNA prevented thermal enhancement of MICA expression and significantly inhibited NK cell cytotoxic activity. Luciferase reporter assays utilizing an hsf1 binding site mutation in the MICA promoter region suggested that this site is required for thermally enhanced MICA promoter activity. We also demonstrate that MICA expression by thermal stress is transient as we investigated the half-life of thermally enhanced MICA on the tumor cell surface. In addition to investigations using a colon tumor cell line as a target, we also found that several patients' colon tumor xenografts also exhibit an enhanced expression of MICA after whole body heating of SCID mice. However, our studies reveal that not all tumor cell lines exhibit thermal sensitivity since HT29 cells did not show a similar enhancement of MICA activity, and further that normal human colon epithelial cells do not change their MICA or HLA expression with mild thermal stress. When we investigated different tumor models in vivo to validate physiological significance of the observed effects of hyperthermia in vitro, we observed an increase in message level of MICA orthologue Rae1 in mouse colon tumor CT26 and a consistent increase in NK cell infiltration into tumors accompanied by an elevated level of tumor cell apoptosis after whole body hyperthermia. Overall, these data suggest that hsf1 mediated MICA upregulation after mild thermal stress and elevated NKG2D clustering could result in enhanced natural killer cell cytotoxic activity. These data may help to identify possible mechanisms by which clinical hyperthermia protocols being tested in cancer patients improve long term control of tumor growth and increase overall survival.
机译:所有循环细胞,包括自然杀伤(NK)细胞,通常在通过人体隔室时都会经历温度梯度。但是,炎症驱动的发热条件会使它们暴露于高温几个小时。先前在小鼠中的研究表明,轻度(发烧范围)的全身热疗可能会增强NK细胞对肿瘤生长的控制。此外,最近在癌症患者中进行的临床研究表明,将热疗与放疗相结合可带来积极的总体生存益处。在这些临床试验中,热诱导的NK细胞活性增强是否涉及患者所经历的益处尚不清楚。通常,迄今为止,几乎没有研究研究在抗肿瘤免疫应答中是否存在可以介导肿瘤细胞杀伤的特异性,热敏感性分子或机制。在本论文研究中,我们假设轻度发烧范围内的热应激至少通过以下两种机制导致NK细胞活性增强:(1)肿瘤细胞表面分子(MICA)的特异性上调,使它们对NKG2D-更加敏感介导的NK细胞识别和杀伤,以及(2)NK细胞上NKG2D受体的短暂聚集,可能会降低NK细胞的活化阈值。我们发现人外周血NK细胞和靶肿瘤细胞暴露于发烧范围温度(39.5°C)会显着增强其裂解Colo205靶细胞的能力。这种作用取决于NK细胞的NKG2D受体及其配体MHC I类相关链A(MICA)的功能,并且在加热NK和肿瘤细胞靶标时达到最大。当长期培养的NK细胞系或IL-2激活的外周血NK细胞用作效应子时,未观察到类似的效果,表明效应子的热敏感性是依赖于激活状态的。在NK细胞上,轻度热应激后可能会发生质膜重组,膜结构(称为脂质筏)的破坏会导致热应激丧失,从而增强NK细胞的活性。观察到热暴露并不影响NKG2D表面表达的总水平,但会导致其明显的聚集,与IL-2诱导的激活后发生的聚集相同,并且这种影响是短暂的。它会在24小时内在NK细胞上丢失。在肿瘤靶细胞上,先前报道的对压力敏感的细胞靶标包括热激蛋白,MICA和MHC I类。我们发现,温和的温度升高会导致MICA的转录上调,其方式与对细胞溶解的敏感性增加有关。但是,MHC I类水平没有变化。我们还研究了轻度热应激后可溶性MICA分子的水平,因为它们与通过NKG2D抑制NK细胞介导的激活有关。尽管我们观察到了肿瘤细胞表面上MICA的热增强,但是我们没有观察到随着热应力的增加,MICA的可溶形式增加。若要确定潜在的潜在机制,以增加肿瘤细胞上MICA的水平,我们调查了转录因子hsf1在轻度热应激下对调节MICA的作用。我们观察到,使用siRNA阻断Colo205细胞中的hsf1可以防止MICA表达的热增强,并显着抑制NK细胞的细胞毒性。利用MICA启动子区域中的hsf1结合位点突变的荧光素酶报告基因分析表明,该位点是热增强MICA启动子活性所必需的。我们还证明了由热应激引起的MICA表达是瞬时的,因为我们研究了肿瘤细胞表面热增强的MICA的半衰期。除了使用结肠肿瘤细胞系作为靶标进行的研究之外,我们还发现,在对SCID小鼠进行全身加热后,几例患者的结肠肿瘤异种移植物还显示出增强的MICA表达。然而,我们的研究表明,并非所有的肿瘤细胞系都表现出热敏感性,因为HT29细胞未显示出类似的MICA活性增强,而且正常人结肠上皮细胞在轻度热应激下不会改变其MICA或HLA表达。当我们在体内研究不同的肿瘤模型以验证体外热疗效果的生理学意义时,我们观察到小鼠结肠肿瘤CT26中MICA直系同源Rae1的信息水平增加,并且NK细胞浸润到肿瘤中并伴随着肿瘤的持续增加。全身热疗后肿瘤细胞凋亡水平升高。总体,这些数据表明,hsf1在轻度热应激和NKG2D簇升高后介导的MICA上调可能导致增强自然杀伤细胞的细胞毒活性。这些数据可能有助于确定可能的机制,通过这些机制,正在癌症患者中测试的临床热疗方案可改善对肿瘤生长的长期控制并增加总体生存率。

著录项

  • 作者

    Dayanc, Baris Emre.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Biology Molecular.;Health Sciences Immunology.;Health Sciences Oncology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;肿瘤学;预防医学、卫生学;
  • 关键词

  • 入库时间 2022-08-17 11:39:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号