首页> 外文学位 >Hybrid integration of silicon/silicone microsystems: A closed-loop, autonomous micro-incubator.
【24h】

Hybrid integration of silicon/silicone microsystems: A closed-loop, autonomous micro-incubator.

机译:硅/硅微系统的混合集成:一个闭环,自主的微型培养箱。

获取原文
获取原文并翻译 | 示例

摘要

Since the 1950's, the microelectronics industry has seen a remarkable evolution from the centimeter-scale devices created by Jack Kilby to millimeter-scale integrated circuits fabricated by Robert Noyce to today's 8nm feature size MOS transistors. During this time, not only have exponential improvements been made in the size of the devices, but the CAD and workstation technologies have advanced at a similar pace enabling the design of truly complex systems on a chip. The microfabrication and micro-engineering advances that have made all this possible have depended upon the ability to produce integrated electronic components through rapid, low-cost techniques that yield highly accurate and reproducible structures. Adaptation of these silicon-based technologies together with advances in new bio-material have led to incredible advances in microfluidics through soft lithography of PDMS. These microfluidic devices have demonstrated order of magnitude improvements in reaction efficiency and are changing the standards for life science research techniques. Yet, to truly advance micro-technology for the life sciences, we must move beyond passive structures to devices that additionally possess active functions: autonomous closed-loop sensing, control and actuation. Such devices have the potential to change the state of the art not only in research settings but also medical diagnosis and disease treatment in point of care and field settings.; In this work, I have explored systems that do just that. The most promising advances in microfluidics for the life sciences have been in the hybrid integration of traditional microelectronics and passive microfluidics. Through the example of a hybrid microsystem for stand-alone cell culture and incubation, I explore the entire architectural space for design of hybrid systems. I investigate the trade-offs in scaling, design, fabrication, packaging and testing of these systems, using empirical, analytical and finite element analysis techniques, while; taking very careful consideration of the usability and environmental impact of such devices. The approach to integration demonstrates a new paradigm for the engineering of heterogeneous, structurally complex three dimensional microsystems for the life sciences.
机译:自1950年代以来,微电子行业发生了令人瞩目的发展,从杰克·基尔比(Jack Kilby)制造的厘米级器件到罗伯特·诺伊斯(Robert Noyce)制造的毫米级集成电路到当今的8nm特征尺寸MOS晶体管。在此期间,不仅设备的尺寸得到了指数级的改进,而且CAD和工作站技术也以相似的速度发展,从而可以设计出真正复杂的芯片系统。使所有这些成为可能的微细加工和微工程技术的进步取决于通过快速,低成本的技术生产集成的电子元件的能力,这些技术可产生高度准确且可复制的结构。这些基于硅的技术的改进以及新生物材料的发展,通过PDMS的软光刻技术,在微流体领域取得了令人难以置信的进步。这些微流体装置已经证明了反应效率的数量级提高,并且正在改变生命科学研究技术的标准。然而,要真正推动生命科学领域的微技术发展,我们必须从无源结构转向具有附加功能的设备:自主闭环感应,控制和驱动。这样的设备不仅在研究环境中而且在护理和现场环境中都有可能改变现有技术水平,并且有可能改变医学诊断和疾病治疗。在这项工作中,我探索了可以做到这一点的系统。生命科学领域的微流体技术最有希望的进展是传统微电子技术与无源微流体技术的混合集成。通过用于独立细胞培养和孵育的混合微系统的示例,我探索了用于设计混合系统的整个架构空间。我将使用经验,分析和有限元分析技术来研究这些系统的缩放,设计,制造,封装和测试中的权衡,而同时,仔细考虑此类设备的可用性和环境影响。集成方法为生命科学领域的异构,结构复杂的三维微系统的工程设计展示了一种新的范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号