首页> 外文学位 >Integrated CMOS capacitance sensor and microactuator control circuits for on-chip cell monitoring.
【24h】

Integrated CMOS capacitance sensor and microactuator control circuits for on-chip cell monitoring.

机译:集成的CMOS电容传感器和微执行器控制电路,用于片上电池监控。

获取原文
获取原文并翻译 | 示例

摘要

"Cell Clinics," CMOS/MEMS hybrid microsystems for on-chip investigation of biological cells, are currently being engineered for a broad spectrum of applications including olfactory sensing, pathogen detection, cytotoxicity screening and biocompatibility characterization. In support of this effort, this research makes two primary contributions towards designing the cell-based lab-on-a-chip systems.;Firstly it develops CMOS capacitance sensors for characterizing cell-related properties including cell-surface attachment, cell health and growth. Assessing these properties is crucial to all kinds of cell applications. The CMOS sensors measure substrate coupling capacitances of anchorage-dependent cells cultured on-chip in a standard in vitro environment. The biophysical phenomenon underlying the capacitive behavior of cells is the counterionic polarization around the insulating cell bodies when exposed to weak, low frequency electric fields. The measured capacitance depends on a variety of factors related to the cell, its growth environment and the supporting substrate. These include membrane integrity, morphology, adhesion strength and substrate proximity. The demonstrated integrated cell sensing technique is non-invasive, easy-to-use and offers the unique advantage of automated real time cell monitoring without the need for disruptive external forces or biochemical labeling.;On top of the silicon-based cell sensing platform, the cell clinics microsystem comprises MEMS structures forming an array of lidded microvials for concerning single cells or small cell groups within controllable microenvironments in close proximity to the sensor sites. The opening and closing of the microvial lids are controlled by actuator hinges employing an electroactive polymer material that can electro-chemically actuate. In macro-scale setups such electrochemical actuation reactions are controlled by an electronic instrument called potentiostat. In order to enable system miniaturization and enhance portability of cell clinics, this research makes its second contribution by implementing and demonstrating a CMOS potentiostat module for in situ control of the MEMS actuators.;The original contributions of this dissertation include: (1) First generation single electrode capacitance sensors based on charge sharing for establishing proof of concept for the on-chip cell sensing approach. Demonstration of novel cell sensing applications including cell adhesion characterization, viability monitoring and proliferation tracking. (2) Second generation fully-differential rail-to-rail capacitance sensors with on-chip gain tuning capability for achieving improved performance in terms of higher sensitivity, capacitance resolution, dynamic range and noise immunity. Shielded current routing bus architectures for incorporating the capacitance measurement circuit in high density sensor arrays and conserving individual sensor performance. Mismatch compensation and sensor output offset cancelation by employing in-circuit floating gate trimming. (3) An integrated CMOS potentiostat module custom designed for in situ control of the microactuators housed in cell clinics. Demonstration of potentiostat operation for control of off-chip and on-chip electroactive polymer-based microactuators.
机译:“ Cell Clinics”是用于对生物细胞进行片上研究的CMOS / MEMS混合微系统,目前正被设计用于包括嗅觉传感,病原体检测,细胞毒性筛选和生物相容性表征在内的广泛应用。为了支持这项工作,这项研究为设计基于细胞的芯片实验室系统做出了两个主要贡献:首先,它开发了CMOS电容传感器来表征与细胞相关的特性,包括细胞表面附着,细胞健康和生长。评估这些属性对于所有类型的电池应用都至关重要。 CMOS传感器测量在标准体外环境中在芯片上培养的锚定依赖性细胞的基质偶联电容。细胞电容行为背后的生物物理现象是,当暴露于弱的低频电场时,绝缘细胞体周围的反离子极化。测得的电容取决于与细胞,其生长环境和支撑基板有关的多种因素。这些包括膜的完整性,形态,粘附强度和底物接近性。经过验证的集成细胞传感技术是一种非侵入性,易于使用的技术,并具有自动化实时细胞监测的独特优势,而无需破坏性外力或生化标记。;在基于硅的细胞传感平台之上,单元诊所微系统包括MEMS结构,这些结构形成有盖微瓶阵列,用于处理可控微环境中紧邻传感器位置的单个细胞或小细胞群。微型瓶盖的打开和关闭由执行器铰链控制,该执行器铰链采用可电化学驱动的电活性聚合物材料。在宏观设置中,这种电化学致动反应由称为恒电位仪的电子仪器控制。为了实现系统的小型化并提高细胞诊所的便携性,本研究通过实现和演示用于MEMS驱动器的原位控制的CMOS稳压器模块做出了第二个贡献。本论文的最初贡献包括:(1)第一代基于电荷共享的单电极电容传感器,可为片上电池传感方法建立概念验证。演示了新颖的细胞感测应用,包括细胞粘附特性,活力监测和增殖跟踪。 (2)具有片上增益调整功能的第二代全差分轨到轨电容传感器,可在更高的灵敏度,电容分辨率,动态范围和抗噪性方面实现更高的性能。屏蔽电流路由总线体系结构,用于将电容测量电路合并到高密度传感器阵列中,并保持单个传感器的性能。通过采用在线浮栅微调,失配补偿和传感器输出失调消除。 (3)定制的集成CMOS稳压器模块,用于原位控制细胞诊所中的微执行器。演示稳压器操作,用于控制片外和片上基于电活性聚合物的微执行器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号