首页> 外文学位 >Data-driven modeling, control and tools for cyber-physical energy systems.
【24h】

Data-driven modeling, control and tools for cyber-physical energy systems.

机译:用于网络物理能源系统的数据驱动的建模,控制和工具。

获取原文
获取原文并翻译 | 示例

摘要

nergy systems are experiencing a gradual but substantial change in moving away from being non-interactive and manually-controlled systems to utilizing tight integration of both cyber (computation, communications, and control) and physical representations guided by first principles based models, at all scales and levels. Furthermore, peak power reduction programs like demand response (DR) are becoming increasingly important as the volatility on the grid continues to increase due to regulation, integration of renewables and extreme weather conditions. In order to shield themselves from the risk of price volatility, end-user electricity consumers must monitor electricity prices and be flexible in the ways they choose to use electricity.;This requires the use of control-oriented predictive models of an energy system's dynamics and energy consumption. Such models are needed for understanding and improving the overall energy efficiency and operating costs. However, learning dynamical models using grey/white box approaches is very cost and time prohibitive since it often requires significant financial investments in retrofitting the system with several sensors and hiring domain experts for building the model. We present the use of data-driven methods for making model capture easy and efficient for cyber-physical energy systems.;We develop Model-IQ, a methodology for analysis of uncertainty propagation for building inverse modeling and controls. Given a grey-box model structure and real input data from a temporary set of sensors, Model-IQ evaluates the effect of the uncertainty propagation from sensor data to model accuracy and to closed-loop control performance. We also developed a statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor placement and density for accurate data collection for model training and control. Using a real building test-bed, we show how performing an uncertainty analysis can reveal trends about inverse model accuracy and control performance, which can be used to make informed decisions about sensor requirements and data accuracy.;We also present DR-Advisor, a data-driven demand response recommender system for the building's facilities manager which provides suitable control actions to meet the desired load curtailment while maintaining operations and maximizing the economic reward. We develop a model based control with regression trees algorithm (mbCRT), which allows us to perform closed-loop control for DR strategy synthesis for large commercial buildings. Our data-driven control synthesis algorithm outperforms rule-based demand response methods for a large DoE commercial reference building and leads to a significant amount of load curtailment (of 380kW) and over
机译:在所有规模上,nergy系统正经历逐渐但实质性的转变,从非交互式和手动控制的系统转变为利用基于第一原理的模型指导的网络(计算,通信和控制)和物理表示的紧密集成和水平。此外,由于法规,可再生能源的整合和极端天气条件导致电网波动不断增加,诸如需求响应(DR)之类的峰值功率降低计划变得越来越重要。为了保护自己免受价格波动的风险,最终用户用电者必须监控电价并灵活选择用电方式。这需要使用面向控制的能源系统动态预测模型和能源消耗。需要这样的模型来理解和改善总体能源效率和运营成本。但是,使用灰/白盒方法学习动态模型非常耗时又费力,因为在使用数个传感器对系统进行翻新并雇用领域专家来构建模型时,通常需要大量的财务投资。我们目前使用数据驱动的方法来简化网络物理能源系统的模型捕获并提高效率。我们开发了Model-IQ,这是一种用于分析不确定性传播的方法,用于建立逆模型和控制。给定灰盒模型结构和一组临时传感器的实际输入数据,Model-IQ评估不确定性从传感器数据传播到模型精度以及闭环控制性能的影响。我们还开发了一种统计方法来量化传感器测量中的偏差,并确定接近最佳的传感器位置和密度,以进行准确的数据收集,以进行模型训练和控制。使用真实的建筑测试台,我们演示了如何执行不确定性分析可以揭示逆模型准确性和控制性能的趋势,这些趋势可用于做出有关传感器要求和数据准确性的明智决策。数据驱动的需求响应推荐系统,用于建筑物的设施经理,该系统提供适当的控制措施,以减少负荷,同时维持运营并最大程度地提高经济效益。我们使用回归树算法(mbCRT)开发了基于模型的控件,该控件使我们能够为大型商业建筑的DR策略综合执行闭环控制。我们的数据驱动控制综合算法优于大型DoE商业参考建筑物的基于规则的需求响应方法,并导致大量的负载削减(380kW)及以上

著录项

  • 作者

    Behl, Madhur.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Electrical engineering.;Computer science.;Energy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号