首页> 中文学位 >非对称双相复合氧分离膜的相转化流延制备和透氧性能研究
【6h】

非对称双相复合氧分离膜的相转化流延制备和透氧性能研究

代理获取

目录

声明

摘要

第一章 绪论

1.1 引言

1.2 陶瓷透氧膜反应器技术

1.2.1 甲烷部分氧化膜反应器研究

1.2.2 煤炭气化技术

1.2.3 致密陶瓷透氧膜用于CO2捕获

1.3 陶瓷透氧膜原理简介

1.3.1 透氧膜的氧渗透影响因素

1.3.2 透氧膜膜材料的选择

1.4 陶瓷透氧膜结构选择及制备工艺

1.4.1 相转化技术简介

1.4.2 相转化制备陶瓷透氧膜研究现状

1.4.3 目前相转化制备陶瓷透氧膜存在问题

1.5 陶瓷透氧膜结构的形貌表征

1.6 本论文的研究思路和主要内容

参考文献

第二章 La0.8Sr0.2Cr0.5Fe0.5O3-δ和zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ稳定性和透氧性能研究

2.1 引言

2.2 实验

2.2.1 样品制备和表征

2.2.2 氧渗透测试

2.3 结果

2.3.1 单相体系

2.3.2 YSZ-LSCrF双相体系

2.4 讨论

2.5 结论

参考文献

第三章 Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ非对称平板膜制备和透氧性能研究

3.1 引言

3.2 实验

3.2.1 样品制备

3.2.2 性能表征

3.3 结果

3.3.1 YSZ-LSCrF的微观结构

3.2.2 多孔支撑体的孔隙率

3.2.3 氧渗透性能

3.2.4 涂覆多孔层的非对称膜透氧性能

3.4 讨论

3.5 结论

参考文献

第四章 zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ非对称平板膜甲烷部分氧化反应器研究

4.1 引言

4.2 实验

4.2.1 样品制备

4.2.2 膜反应器性能测试

4.3 结果

4.3.1 催化剂组成对其透氧能力的影响

4.3.2 涂覆Ni/LSCrF催化剂的平板膜POM性能

4.3.3 测试前后催化剂形貌变化

4.4 讨论

4.5 结论

附录:POM反应器用测试模具制备

参考文献

第五章 zr0.84Y0.16O1.92-La0.8Sr0.2MnO3-δ非对称结构平板膜制备及透氧性能研究

5.1 引言

5.2 实验

5.2.1 样品制备

5.2.2 性能表征

5.2.3 氧渗透测试

5.3 结果

5.3.1 烧结行为

5.3.2 相组成和微结构

5.3.3 孔隙率

5.3.4 多孔支撑体的透气性能

5.3.5 氧渗透性能

5.4 讨论

5.5 结论

参考文献

第六章 Ce0.8Sm0.2O1.9-La0.8Sr0.2MnO3-δ非对称结构平板膜制备和透氧性能研究

6.1 引言

6.2 实验

6.2.1 样品制备

6.2.2 性能表征

6.3 结果

6.3.1 膜组成和形貌

6.3.2 氧渗透性能

6.4 结论

参考文献

第七章 总结与研究展望

致谢

在读期间发表的学术论文与取得的研究成果

展开▼

摘要

致密陶瓷氧分离膜有望将氧气生产成本降低30%左右,其构成的反应器集氧分离和化学反应于一体,更是具有很好的经济性。膜反应器应用不仅要求材料具有可观的氧渗透能力,而且能在高温、氧化性气氛和还原性气氛下都能保持结构和化学稳定。已有的研究表明:单相氧离子电子混合传导材料的氧渗透速率较高,但其稳定性无法满足要求。双相复合混合传导材料具有很好的稳定性,但其氧渗透速率偏低,通过将其制成非对称平板结构,减小致密氧分离层的厚度,可以提高其氧渗透能力。平板结构的一大优点是能利用日趋成熟的固体氧化物燃料电池堆的组建技术构建膜组件,便于氧分离膜技术的应用。本博士论文拟研究双相复合透氧膜的材料组成、相转化流延非对称结构平板膜制备方法、透氧性能和膜反应器应用。
  第一章简要介绍了陶瓷透氧膜的背景,原理以及相转化制备非对称膜工艺第二章研究了单相材料La0.8Sr0.2CrxFe1-xO3-δ(LSCrF)的稳定性和透氧性能。LSCrF在稀释的氢气气氛下失重0.5%,对应于晶格氧空位的增加。LSCrF粉体在950℃纯氢气氛下退火30h后,发生部分分解。热力学计算获得LSCrF的分解氧分压,在950℃为6.3×10-28 atm。将致密片状样品LSCrF的一侧暴露在空气气氛中,另一侧采用CO吹扫,测得950℃的氧渗透速率为0.37 mL·cm2·min-1。氧渗透实验揭示该材料存在氧离子电导,950℃的氧离子电导率约为0.01 S/cm,只有Zr0.84Y0.16O1.92(YSZ)的10%左右。氧渗透实验结束后,与CO接触的膜表面形成了多孔疏松层。本章还研究了由LSCrF与YSZ构成的双相复合材料,发现氧渗透速率略小于单相LSCrF,但是其稳定性得到明显改进。
  第三章研究了Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ(YSZ-LSCrF)非对称结构平板膜的制备方法和氧渗透性能。我们将相转化流延新方法用于YSZ-LSCrF复合材料的制备,所制得的平板膜为非对称结构,由一个厚度120μm的致密层和厚度880μm的多孔支撑层组成。将平板膜的多孔支撑层暴露在空气中,致密层用He气吹扫,在900℃时测得氧渗透速率为0.14 mL·cm-2.min-1。采用CO作为吹扫气,氧渗透速率升高到0.41 mL·cm-2·min-1,这是因为渗透的氧与CO反应,导致渗透侧的氧分压大幅降低,膜两侧的氧分压差增大;在致密层表面涂覆一层同质多孔层,氧渗透速率达到1.57 mL·cm-2·min-1。
  第四章研究了基于YSZ-LSCrF非对称平板膜的甲烷部分氧化(POM)反应。采用的平板膜面积为4.5×4.5cm2,在其致密层表面涂覆了Ni/LSCrF催化剂。将膜的多孔侧暴露在空气中,在致密侧引入甲烷,与渗透的氧发生POM反应。在875℃、甲烷通入速率为30 mL/min时,甲烷转化率达92.3%,CO和H2的选择性分别为92.2%和93.9%, H2/CO比例为2.0。膜反应器具有优异的POM反应性能,有望用作SOFC的前端燃料重整器,在天然气制氢和费托工艺制液体燃料中也有良好的应用前景。
  第五章研究了Zr0.84Y0.16O1.92-La0.8Sr0.2MnO3-δ(YSZ-LSM)双相复合平板膜的制备方法和氧渗透性能。采用相转化流延成型方法制备了非对称结构平板膜,其致密层厚度为150μm,多孔支撑体厚度为850μm。将平板膜的多孔支撑层暴露在空气中,致密层用He气吹扫,在900℃时测得氧渗透速率为0.26 mL·cm-2·min-1,而采用常规双层流延方法制备的非对称平板膜的透氧速率只有0.05mL·cm-2·min-1。两种膜的透氧性能的差别很可能与其多孔支撑层的孔结构有关。两种膜的致密层厚度一样,多孔支撑层的厚度也差别不大,但是孔结构有显著差别。对于相转化法的平板膜,其支撑层含有沿厚度方向生长的指状孔,孔径为数十微米,有利于气体分子的传输。而对于常规双层流延法制备的平板膜,孔径为是10μm左右,孔的趋向随机,不利于气体分子的传输。
  第六章研究了Ce0.8Sm0.2O1.9-La0.8Sr0.2MnO3-δ(SDC-LSM)双相复合平板膜的制备和氧渗透性能。采用相转化流延成型方法制备了非对称结构平板膜,其致密层厚度为150μm,多孔支撑体厚度为850μm。将平板膜的多孔支撑层暴露在空气中,致密层用He气吹扫,在900℃时氧渗透速率0.19 mL·cm-2·min-1,比同样温度下的YSZ-LSM要大得多(0.07 mL·cm-2·min-1)。SDC-LSM非对称平板膜在中低温具有相当可观的透氧速率,在纯氧制备方面有良好的应用前景。
  第七章对本论文进行了总结,并对非对称平板膜的相转化流延制备方法的优化、结构表征、膜组件制备和应用等后续研究提出了建议。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号