【24h】

Two Person Zero-sum Markov Games with Partial Information on Action Spaces

机译:两人零和马尔可夫博弈对动作空间有部分信息

获取原文
获取原文并翻译 | 示例

摘要

In everyday life we sometimes encounter the conflicts in which we cannot know what the other sides do or what they can do. If several stages are played in the conflicts, every person tries to gain exact information about the other sides' intentions or their abilities by observing their behavior. To research these conflicts, we introduce a new mathematical model and define "two-person zero-sum Markov games with partial information on action spaces". Each player in the game observes his opponent's actions carefully to obtain some information about the opponent's action space, which means the ability of him. The more information he obtains, the more payoff he will gain. Thus the player tries to get more information about the opponent and try to reveal less information about himself. By the Nash's theorem of game theory, we prove the existence of a mixed-strategy equilibrium and do the existence of the optimal random strategies for both players.
机译:在日常生活中,我们有时会遇到一些冲突,在冲突中我们不知道对方可以做什么或他们可以做什么。如果在冲突中处于多个阶段,那么每个人都将通过观察自己的行为来获取有关对方的意图或能力的确切信息。为了研究这些冲突,我们引入了一个新的数学模型并定义了“两人零和马尔可夫游戏,其中包含有关动作空间的部分信息”。游戏中的每个玩家都仔细观察对手的动作,以获得有关对手动作空间的一些信息,这意味着他的能力。他获得的信息越多,他将获得更多的回报。因此,玩家尝试获取有关对手的更多信息,并尝试揭示较少的有关他自己的信息。通过纳什博弈论定理,我们证明了混合策略均衡的存在,并且为这两个玩家做了最优随机策略的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号