【24h】

Medical Image Segmentation via Fuzzy Connectedness-based Fuzzy C-Means Method

机译:基于模糊连通性的模糊C-均值方法进行医学图像分割

获取原文
获取原文并翻译 | 示例

摘要

We present a two-stage image segmentation method combining fuzzy connected object extraction and fuzzy C-means method. First, by selecting a seed point in the object of interest and computing fuzzy connectedness value between the seed point and other elements of image, a fuzzy object is extracted and the connectivity scene of the fuzzy object can be got. Second, the original image scene and the new connectivity scene constitute a two-feature cluster space, in which we can use fuzzy C-means method to refine the segmentation result. So our method has better robustness to noise and artifacts. We put this method into practice in our medical image analyzing and processing system, and the results show that this method performs well for some medical images.
机译:我们提出了一种两阶段的图像分割方法,结合了模糊连接对象提取和模糊C均值方法。首先,通过在感兴趣的对象中选择一个种子点,并计算该种子点与图像其他元素之间的模糊连接度值,提取出一个模糊对象,得到了模糊对象的连通性场景。其次,原始图像场景和新的连通性场景构成了两个特征的聚类空间,其中我们可以使用模糊C均值方法来细化分割结果。因此,我们的方法对噪声和伪像具有更好的鲁棒性。我们在医学图像分析和处理系统中将该方法付诸实践,结果表明该方法对某些医学图像表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号