【24h】

A NEURAL NETWORK BASED THICKNESS CONTROL FOR TANDEM ROLLING MILL SYSTEMS

机译:基于神经网络的串列轧机厚度控制

获取原文
获取原文并翻译 | 示例

摘要

Since the last decade, artificial neural networks have been successfully applied to the control of several industrial processes. In this work an interesting application of neural network control of tandem systems is presented. One of the main problems in the control design for rolling systems is the difficulty to eliminate time delays from the measurement of the strip output thickness. The time delay is a consequence of the output sensor placement that is usually located at some distance from the roll gap. The proposed technique uses the gap direct measurement to feed an output thickness predictor algorithm (OTPA). The OTPA is based on sensitivity functions whose parameters are previously calculated from the differentiation of the outputs of a properly trained artificial neural network (ANN). The main aspect of this ANN-based control scheme is that it allows to overcome the undesired consequences of the existing time delays. Simulation results are presented to illustrate the proposed technique performance.
机译:自上个十年以来,人工神经网络已成功应用于多种工业过程的控制。在这项工作中,提出了串联系统神经网络控制的有趣应用。轧制系统控制设计中的主要问题之一是难以消除带材输出厚度的测量带来的时间延迟。时间延迟是输出传感器放置的结果,输出传感器放置位置通常与辊缝有一定距离。所提出的技术使用间隙直接测量来馈送输出厚度预测器算法(OTPA)。 OTPA基于灵敏度函数,该灵敏度函数的参数是事先根据经过适当训练的人工神经网络(ANN)输出的微分计算得出的。这种基于ANN的控制方案的主要方面在于,它可以克服现有时间延迟带来的不良后果。仿真结果表明了所提出的技术性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号