【24h】

An IO Optimized Data Access Method in Distributed Key-Value Storage System

机译:分布式键值存储系统中的IO优化数据访问方法

获取原文

摘要

Distributed KEY-VALUE storage system is a new storage framework for cloud computing. It can enable an application to dynamically adapt to growing workloads by increasing the number of servers. However, current distributed KEY-VALUE storage systems are still inefficient on range query for larger result set. When the result set become large, the file layout, cache hit rate are both key points for IO efficiency. In this paper, we will introduce our experience under the development of China Mobile Big Cloud KEY-VLAUE DB (BC-kvDB). We will discuss how we increase IO efficiency in BC-kvDB. BC-kvDB is based on single-table space data model and provides SQL-LIKE DDL and DML language. BC-kvDB's high throughput is benefit from data locality storage, column-storage structure and multi-layer caches. Data can be accessed in local cache or local blocks through block index. Experimental results show that the random writing performance of BC-kvDB is 2.5 times better than HBase and the random reading performance is 1.8-2 times than HBase.
机译:分布式键值存储系统是一种用于云计算的新存储框架。通过增加服务器数量,它可以使应用程序动态适应不断增长的工作负载。但是,对于较大的结果集,当前的分布式键值存储系统在范围查询上仍然效率低下。当结果集变大时,文件布局,缓存命中率都是提高IO效率的关键点。在本文中,我们将介绍在中国移动大云KEY-VLAUE DB(BC-kvDB)的开发中的经验。我们将讨论如何提高BC-kvDB中的IO效率。 BC-kvDB基于单表空间数据模型,并提供SQL-LIKE DDL和DML语言。 BC-kvDB的高吞吐量得益于数据本地存储,列存储结构和多层缓存。可以通过块索引在本地缓存或本地块中访问数据。实验结果表明,BC-kvDB的随机写入性能是HBase的2.5倍,随机读取性能是HBase的1.8-2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号