首页> 外文会议>World conference on earthquake engineering;WCEE >ACTIVE DAMAGE DIAGNOSIS OF BOLTED JOINTSUSING SUPPORT VECTOR MACHINES
【24h】

ACTIVE DAMAGE DIAGNOSIS OF BOLTED JOINTSUSING SUPPORT VECTOR MACHINES

机译:基于支持向量机的螺栓联接主动损伤诊断

获取原文

摘要

An active diagnosis method using support vector machines is presented. The support vector machine is arecently developed pattern recognition method that has some similarities with the neural network. It has astrong pattern recognition capability with relatively easy implementation processes. By introducing thesupport vector machines, a flexible and accurate damage diagnosis procedure is formulated. Theprocedure proposed here can be extended to an automatic diagnosis with strong learning capability. Themulti-dimensional feature vectors that represent the features of damages are generated by active sensingtechnologies based on ultrasonic wave propagation. Piezoelectric transducers were used for generatingultrasonic Lamb waves in a plate and for sensing the traveling ultrasonic waves. A network ofpiezoelectric elements attached to neighbors of a bolted joint is utilized to obtain the inputs and outputscombinations in the time domain. The recorded time histories are converted to multi-dimensional featurevectors to teach support vector machines. Simplified bolted joints were fabricated using aluminum platesand bolts. The excitation frequency of the ultrasonic wave is 50KHz. Another pattern recognition method,the correlation analysis, is also applied to the same feature vectors. The better accuracy of the proposedmethod is successfully presented compared with the correlation analysis. It is also shown that theapplication of wavelet transform exhibits a drastic improvement of recognition accuracy.
机译:提出了一种使用支持​​向量机的主动诊断方法。支持向量机是最近开发的模式识别方法,与神经网络有一些相似之处。它具有强大的模式识别功能,并且实现过程相对简单。通过引入支持向量机,制定了灵活而准确的损坏诊断程序。这里提出的过程可以扩展到具有强大学习能力的自动诊断。表示损伤特征的多维特征向量是由主动传感技术基于超声波传播生成的。压电换能器用于在板中产生超声波兰姆波并感测行进的超声波。利用压电元件的网络连接到螺栓接头的邻居,以获取时域中的输入和输出组合。将记录的时间历史记录转换为多维特征向量,以教授支持向量机。简化的螺栓连接使用铝板和螺栓制造。超声波的激发频率为50KHz。相关识别的另一种模式识别方法也被应用于相同的特征向量。与相关分析相比,该方法具有更好的准确性。研究表明,小波变换的应用极大地提高了识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号