首页> 外文会议>Workshop on structured prediction for natural language processing 2016 >Research on attention memory networks as a model for learning natural language inference
【24h】

Research on attention memory networks as a model for learning natural language inference

机译:注意记忆网络作为自然语言推理学习模型的研究

获取原文
获取原文并翻译 | 示例

摘要

Natural Language Inference (NLI) is a fundamentally important task in natural language processing that has many applications. It is concerned with classifying the logical relation between two sentences. In this paper, we propose attention memory networks (AMNs) to recognize entailment and contradiction between two sentences. In our model, an attention memory neural network (AMNN) has a variable sized encoding memory and support-s semantic compositionality. AMNN captures sentence level semantics and reasons relation between the sentence pairs; then we use a S-parsemax layer over the output of the generated matching vectors (sentences) for classification. Our experiments on the Stanford Natural Language Inference (SNLI) Corpus show that our model outperforms the state of the art, achieving an accuracy of 87.4% on the test data.
机译:自然语言推论(NLI)是自然语言处理中一项非常重要的任务,具有许多应用程序。它涉及对两个句子之间的逻辑关系进行分类。在本文中,我们提出了注意力记忆网络(AMN)来识别两个句子之间的包含和矛盾。在我们的模型中,注意力记忆神经网络(AMNN)具有可变大小的编码记忆和支持语义组合性。 AMNN捕获句子对之间的句子级语义和原因关系;然后我们在生成的匹配矢量(句子)的输出上使用S-parsemax层进行分类。我们在斯坦福大学自然语言推理(SNLI)语料库上进行的实验表明,我们的模型优于现有技术,在测试数据上达到87.4%的准确性。

著录项

  • 来源
  • 会议地点 Austin(US)
  • 作者单位

    School of Computer Science and Technology Dalian University of Technology, Dalian, P.R. China;

    School of Computer Science and Technology Dalian University of Technology, Dalian, P.R. China;

    School of Computer Science and Technology Dalian University of Technology, Dalian, P.R. China;

    School of Computer Science and Technology Dalian University of Technology, Dalian, P.R. China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号